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Abstract: We present here the main steps to go through whenever
having to create a new simulation with Sim-Diasca, from the
definition of the simulation case to the one of the models, the
scenarios and any extra simulation service involved.
The modelling and the implementation are described on a step-
by-step basis, allowing to introduce incidentally the basic fea-
tures offered by the engine.
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Note
Before reading this document, we strongly advise to have at least had
a first look at:

1. the slides of the general-purpose presentation of Sim-Diasca

2. the Sim-Diasca Technical Manual, notably its simulation ontology
(in chapter 3) and its overall modelling considerations (in chapter
6)
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1 Overview & Context

1.1 Objective

Let’s suppose we have a simulation to implement. This would be here a simula-
tion in the field of Complex Systems: the system of interest would be described
in a disaggregated way, i.e. as autonomous agents whose interactions
recreate the overall behaviour and dynamics of that system1.

These interactions would be event-based, rather than taking place con-
tinuously. For example, they could correspond to an incinerator notifying an
operator of a burner failure, to a tramway opening its doors or to a person
dialling the phone number of a friend.

Indeed the underlying time is discrete here, and operations last for a dura-
tion materialised by punctual state transitions, i.e. events that bear a timestamp
in simulation time. If there were quantities that would be continuously chang-
ing (like the temperature of a room, depending on the time of the day), their
variation would have to be discretised over time first2.

So let’s see how easy it is to use the Sim-Diasca engine in order to per-
form such simulations of complex systems, relying for that on a simplified yet
representative simulation test case.

1.2 Introducing the Engine Thanks to a Step-by-Step Ex-

ample

We will guide you here through the whole process of creating a brand new
simulation of your own, here involving, for the sake of this example, cus-
tomers trying to obtain soda cans from vending machines in order to relieve
their thirst.

Let’s name that mock case the Soda-Example simulation case. We will
introduce also at its level some stochastic elements to showcase how they should
be managed.

We took on purpose a very simple example coming from the everyday life
rather than any domain-specific one (e.g. in terms of telecom, or urban planning,
or electricity), so that the reader can get familiar here only with the topics
directly related to the simulation field, without having them intermingled with
additional specific domains.

So, what does creating a simulation always entail?

1One can note that not all simulations are naturally described according to such a "complex
system" scheme. For example some data-flow computations are typically best described as
spreadsheets. However, if it is deemed relevant enough, a simulation engine for complex
systems, even if it is certainly not the most relevant tool for that, could be entrust in order
to evaluate these spreadsheet-like computations.

2We can see here that models that would be driven mostly by differential equations (over
continuous time) are not the primary targets of such simulation engines. Even if a numerical
solver could be used underneath and if, in some cases, time could then be safely quantified,
correctly mixing discrete-time and continuous-time models in the general case requires a very
specific and advanced kind of engine, an hybrid one; only very few engines of this type exist
(and, to the best of our knowledge, none is parallel - hence these engines may experience
scalability issues). So it seems difficult to rely both on an hybrid mode of operation and on a
scalable one.
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• defining the simulation case, which is the overall description of the sim-
ulation that will rule its actual execution

• defining the "abstractions" of interest in this context, i.e.:

– the models involved, which collectively provide a simplified repre-
sentation of the target system that is to be simulated

– the scenarios (if any) to account for the context of the target system

• defining the results expected from the simulation, i.e. what are the met-
rics that shall be collected thanks to probes, and how they should be
produced

Let’s begin with the overall coordinator, i.e. the simulation case, before
discussing more complex subjects with, notably, the models.

Note
This modeller guide concentrates on the Soda-Example test, which we
found very useful to demonstrate various aspects of the simulation of
complex systems and compare engines.
This case has been fully implemented, and is part of the
standard Sim-Diasca distribution, shared as an archived named
Sim-Diasca-x.y.z.tar.bz2.
On UNIX (typically GNU/Linux), one should extract it thanks to:
tar xvjf Sim-Diasca-x.y.z.tar.bz2. All relative paths mentioned
in that document are relative to the root of this extracted archive, i.e.
Sim-Diasca-x.y.z.
One can thus refer to the full sources of the Soda-Example test, which
are located in mock-simulators/soda-test.
Most of the files of interest lie in its src subdirectory, so, unless specified
otherwise, any file that is specific to Soda-Example will be found there.
Files that relate to the engine itself are located in the sim-diasca tree
of the same archive.
Through this guide, various files will be mentioned - we strongly advise
the reader to open them as they are mentioned , since it helps consid-
erably figuring out the general layout, and understanding that there is
no magic involved.
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2 Defining the Simulation Case

The purpose of the simulation case is to define all the settings of a virtual
experiment that will be run.

This includes defining, for that targeted simulation:

• technical settings, like the properties to be enforced for this simulation
(e.g. reproducibility), the time-step to be used or the list of the eligible
computing hosts

• domain-specific settings, like the description of the initial state of the
simulation (i.e. the model instances that exist when the simulation starts)
and its various termination criteria

• experiment settings, like the specification of the results that are expected
from the simulation, i.e. what are the probes that shall be enabled,
whether these results should displayed to the user, etc.

Multiple experiments may apply to a given simulation (e.g. the Soda-Example
one), hence multiple simulation cases are generally devised. For example:

• there could be as many minimalist cases as there would be different models
defined (e.g. one case would perform a unit test of the soda vending
machine, and each type of thirsty customer would have its own test case
as well)

• other simulation cases could serve to test the interactions between such a
machine and a given type of customer

• finally overall integrated cases could exist to provide the actual targeted
simulation(s), with their final settings, scale, bells and whistles

2.1 Where Shall a Simulation Case be Defined?

All the information relative to a simulation case are to be specified into a single
file, named according to that simulation case.

If we were to define a test that would focus on the loading of initial instances
for our Soda-Example, then we could name the corresponding simulation case
soda_loading_test and implement it in a text file named soda_loading_test.erl.

The .erl file extension corresponds to Erlang source files, knowing that
Sim-Diasca uses this programming language for its implementation (one may
refer to Just A Bit of Computer Science To Better Understand The Whole for
more information on that topic).

Now is the right time to have soda_loading_test.erl3 opened in your
favorite text editor (e.g. Emacs, Eclipse, etc. - preferably with a support for
the highlighting of the Erlang syntax).

3As mentioned earlier, this file is located in the
Sim-diasca-x.y.z/mock-simulators/soda-test/src directory.
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2.2 The Three Main Settings Records

Most of the elements mentioned in a simulation case are to be specified in
predefined records, which are Erlang data-structures (say, to describe a person)
containing named fields (for example to store information about that person,
like his name, phone, address, etc.).

Three records play a central role in simulation cases and will have to be
specified in order to initialise the engine:

• the simulation_settings record, gathering information about the simu-
lation itself (name, tick duration, etc.)

• the deployment_settings record, gathering information about its context
of deployment and execution, knowing that Sim-Diasca is a distributed en-
gine (e.g. computing hosts potentially involved, extra elements to deploy,
extra services to activate)

• the load_balancing_settings record, gathering information about how
the computing resources shall be allocated to the various parts of the
simulation

Sensible default values are defined for most of the fields of these records. In
this modeller guide, we will mainly discuss the ones that should be overridden
for this example4.

2.2.1 Simulation Settings

Let’s discuss first the technical parameters that shall be specified in various
fields of the simulation_settings record that you can find in soda_loading_test.erl.

For the sake of clarity, a simulation should preferably have a name of its own
- to be defined in the simulation_name field. An adequate naming is convenient
to discriminate more easily among runs and result sets5.

Let’s forfeit any creativity and name our case "Sim-Diasca Initial State Load-
ing Test".

We must also define the duration (in virtual time) of the fundamental time
step of the simulation (or its evaluation frequency), i.e. its overall tick dura-
tion. This is probably the most important setting for synchronous simulations -
to be defined in the tick_duration field, as a floating-point number of seconds.

This corresponds to the finest granularity of time that the simulation will be
able to discriminate. This may relate also to how reactive the simulated world
must be.

The models involved in a simulation have a temporality of their own (a model
is not even aware of the various simulation cases that may include it) and will
rely only on high level, absolute durations (in virtual time of course), expressed
for example as "2 hours" rather than as a number of ticks.

4For a complete description of these three records, please refer to the Sim-Diasca Technical

Guide or directly to their definition, respectively in the following header files in the sim-diasca
tree: class_TimeManager.hrl, class_DeploymentManager.hrl and class_LoadBalancer.hrl

(the .hrl extension denotes Erlang header files).

5Both of them benefit from mechanisms that prevent any two simulation runs to step on
each other. Names are here only to help humans!
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As a result, models are defined regardless of the actual frequency at which
simulations incorporating them will be run, i.e. irrespective of the tick duration
chosen by each simulation case. This offers much flexibility to the simulations,
and removes one cause of interdependence between models.

Of course an infinite leeway cannot be granted: ultimately, at runtime, these
models will have to convert the high level durations they embed (e.g. 2 hours)
into a (positive) integer number of ticks, and of course the overall tick duration of
the case must be fine enough in order that this quantification does not introduce
too much inaccuracy6.

So, why not defining in the simulation case a very small evaluation period
(tick duration), to ensure that, for all models, their embedded high-level dura-
tions will be nicely mapped to ticks?

Well, this is certainly possible, yet generally it forces the engine to schedule
more ticks, resulting in a decrease of the performances of the simulation. Yet
Sim-Diasca offers a relatively advanced scheduling (notably able to determine
ticks that have no impact and jumping over them), which may mitigate that
problem.

Anyway a reasonable trade-off must be found, and in this test case we opt
for a rather fine granularity, namely a simulation frequency of 100Hz, i.e. a
tick duration of 0.01 second. Most simulations will elect far longer time-steps,
some of them for example opting for a yearly basis. This depends much on the
application domain.

Another information to specify in the simulation_settings record is the
results we want to obtain from the simulation. Here we will go for the simplest
solution, using the default value of the result_specification field, which is
to retain all outputs. Other settings allow to filter results by probe type, or
based on a series of targeted and blacklisted patterns applied to the names of
the potential results7.

So, finally, our simulation settings (that we store here in a variable that we
name, for clarity, SimulationSettings - in Erlang, variable names start with
a capital letter) can then simply be defined as:

SimulationSettings = #simulation_settings{
simulation_name="Sim-Diasca Initial State Loading Test",
tick_duration=0.01

}

As mentioned, two other records aggregate the rest of the technical settings.

2.2.2 Deployment Settings

The deployment_settings record allows to set precisely the computing hosts
involved in the execution of that simulation case.

6To anticipate a bit, the Actor class provides relevant primitives for that, including
convert_seconds_to_ticks/2; should, at execution time, the conversion lead to a rela-
tive error greater than the default threshold, the simulation will be stopped on error.
convert_seconds_to_ticks/3 allows the modeller to specify his own threshold, on a per-
conversion basis.

7Please refer to the section 11.2 of the Sim-Diasca Technical Manual for more in-
formation, or directly to the documentation of the result_specification field in the
class_TimeManager.hrl header.
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Sim-Diasca can indeed run a simulation on the user host only (the computer
on which it is run), yet it is a distributed engine - so a single simulation can be
also run on a set of computers (potentially dozens of nodes of a high-performance
computing cluster).

For our simulation case to be able to run indifferently either on a single host
or on multiple ones, the computing_hosts field will be set to request the engine
to check first whether a text file, named here sim-diasca-host-candidates.txt,
can be found. The purpose of this file is to list the host names of all the potential
computers that may be involved in the simulation8.

If this host file is found, the engine will look-up and try to use as many of
the host candidates listed there as possible (depending on their availability and
on the checking of various prerequisites).

If this host file is not found, or if it does not list any usable host, the case
will run only locally, on the user computer.

So the definition for this field of the deployment_settings record boils down
to:

computing_hosts = {use_host_file_otherwise_local,
"sim-diasca-host-candidates.txt"}

That same deployment_settings record is also the place where we can
define the simulation elements (code and data) beyond the mere engine
that shall be deployed on the computing nodes. This includes typically the
binary files corresponding to the implementation of the models and scenarios9,
possibly with any set of data files they might rely upon.

Our Soda-Example case involves only a few models (e.g. model of the soda
vending machine, or of a type of customer) - that will be defined in the same
directory as this simulation case - and no specific data, thus setting the following
field accordingly will be sufficient:

additional_elements_to_deploy = [ { ".",code} ]

This means select all code (BEAM files) recursively found from the current
directory (".", i.e. mock-simulators/soda-test/src here) and add it to the
deployment archive.

Still in the deployment_settings record, other parameters can be set (e.g.
node_availability_tolerance) and other services can be activated (e.g. enable_data_exchanger,
enable_performance_tracker), yet the Soda-Example case can do without
them. So for this record, which we choose to store in a variable named DeploymentSettings,
we finally end up with the following definition:

DeploymentSettings = #deployment_settings{
computing_hosts = {use_host_file_otherwise_local,

8Please refer to the section 19.2 of the Sim-Diasca Technical Manual for its actual
syntax (hostnames but also per-host usernames can be specified), or look directly to
sim-diasca-host-candidates-sample.txt, to be found in the sim-diasca/conf directory.

9In a similar way as Java, Erlang sources (*.erl files), possibly with their headers (*.hrl),
are compiled into bytecodes (*.beam files) that are to be executed by a virtual machine (the
Erlang VM). So Sim-Diasca starts one virtual machine per computing host (that will federate
all its CPUs and all their cores) and sends over the network a compressed archive containing
notably the relevant BEAM files to each of these virtual machines.
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"sim-diasca-host-candidates.txt"},
additional_elements_to_deploy = [ {".",code} ]

}

Again: long to explain, very short to specify!

2.2.3 Load Balancing Settings

As there is no specific measure to be taken regarding load balancing here, the
corresponding record will be used with all its default values set (no field specif-
ically overridden).

We name our variable consistently with the two previous ones, for clarity, so
we have:

LoadBalancingSettings = #load_balancing_settings{}

As a result we now have determined the three key records (regarding simu-
lation, deployment and load balancing) that will allow to initialise the engine.
That will be done simply thanks to:

DeploymentManagerPid = sim_diasca:init(SimulationSettings,
DeploymentSettings,LoadBalancingSettings)

This shall be read as:

• we have a module named sim_diasca

• which exports a function named init

• that takes three parameters (our three records)

• and returns a value, stored in a variable that we named DeploymentManagerPid

We say that the arity (number of parameters) of this function is 3, and that
its full name is sim_diasca:init/3.

The returned value is a PID, an Erlang shorthand for process identifier.
Knowing the PID of a process allows to send messages to it; here we will then
be able to send messages to the deployment manager of the engine, from the
simulation case.

In Erlang, one can optionally specify the signature of a function, i.e. the
types of its parameters and of its returned value.

Such a type specification clarifies the code and the developer’s intent, and
allows some static type checking tools to perform more in-depth verifications.

Here this would be a pretty self-explanatory specification10:

-spec sim_diasca:init(simulation_settings(),deployment_settings(),
load_balancing_settings()) -> pid().

Let’s continue now the simulation specification by its heart: the models.

10One may refer to Types and Function Specifications for more information. -spec is to
be used for functions, while -type is to be used for terms (i.e., values). For example, -type
age() :: integer(). tells that a variable of type age is an integer.
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3 Defining the Models

3.1 General Outline

Here we will focus on a Soda-Example simulation in which there would be:

• two kinds of thirsty customers, whose repletion duration11 obey different
rules

• a single sort of soda vending machine, selling a single sort of soda

Hence we have here three different models. All other elements (the out-
side world, the floor, the room, the other persons, the electric supply, the cans
themselves, etc.) are considered as irrelevant for this study, and thus are ab-
stracted out (i.e. they will not be represented explicitly in the simulation, short
of influencing it).

Of course, for a given model (which can be seen as a description of a type,
i.e. an abstract blueprint), any number of actual instances may exist, each
with its own, individual state and fate. A shorthand for model instance that
will be used from now is actor.

As always, several instances of these models (i.e. several simulation actors)
must be able to interact gracefully with respect to the simulation expected
properties in order to produce its expected outcome, i.e. the simulation results
that were requested by the user.

For this simulation we consider that the results that we are interested in are
the stock of cans that each vending machine holds over time.

We thus want to obtain from the simulation a time series for each machine
stock (as a data file), and its corresponding plot (as an image). Both of them
will be produced by probes (one probe per vending machine).

As there is no refill of the machines modelled, we would expect the stocks
to steadily decrease over simulation time.

Let’s ensure first that we will be able to create the model instances we need.

3.2 Construction Parameters

Having a simulation requires to define, among other elements, its initial situ-
ation, i.e. what are the model instances that exist when the simulation is to
begin.

To do so, we need to be able to define, for each model, how many instances
must exist from the start12, and in which state they are initially.

For that, a model has to define at least one constructor, which is a function
(named construct) that translates a set of construction parameters into an
actual instance of this model, created from them13.

11Defined as the duration after which their thirst reappears once having been extinguished
(i.e. once having drunk a soda can).

12Any simulation must have at least one initial actor. Of course, in the general case, actors
may also be created (and deleted) in the course of the simulation.

13Constructors are essential to preserve encapsulation, i.e. to ensure that the inner imple-
mentation of a model remains private to this model.
Indeed, if, instead of relying on a constructor, the initial state of an actor could be directly

set from outside, then the code creating instances of a model would have to know how the
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3.2.1 Construction Parameters for a Soda Vending Machine

We will suppose here that a given soda vending machine instance can be created
from following construction parameters:

• its name, as a character string (e.g. "My soda machine")14 - a type
designated as string()

• the number of soda cans it stores initially, as a positive integer (e.g.
100), of type can_count()15

• the unitary cost of the soda cans that it sells, as a floating-point cost
in euro (e.g. 1.2 euro per can), of type amount()16

These three construction parameters will be enough to create any instance
of vending machine. Note that we have no idea yet of how the state of a vending
machine will be structured - that is the point of using construction parameters.

3.2.2 Construction Parameters for a Thirsty Customer

As for customers, we mentioned that in our simulation there were two kinds of
them; indeed we consider that there are:

• "deterministic" customers, which are thirsty again after a constant dura-
tion (e.g. 15 minutes after having drunk)

• "stochastic" customers, whose repletion duration is determined by a ran-
dom law in order to illustrate their use (e.g. the duration will be drawn
from an exponential law of rate parameter lambda=2.2)

So a deterministic thirsty customer instance can be defined from fol-
lowing construction parameters:

• his name, as a character string (e.g. "John") - a string()

• the vending machine he knows, as an instance reference17 - a type
designated as class_Actor:actor_pid(), which is actually an alias for
pid(); we see here that we consider that such a customer knows exactly
one vending machine - neither none, nor multiple ones (we would have
defined in this case a list of PIDs)

state of this model is structured. As a result, that code would depend on the implementation
of this model, and a change in the model would propagate to the code using it.
On the contrary, constructors allow for a better uncoupling: should the model implemen-

tation be updated (then probably impacting how its state is defined), it may require only a
change in how its constructor is implemented (construction parameters being then translated
differently) - while the interface of that constructor would not change, and then would not
impact the code outside of this model.

14Naming instances is useful to help understanding the results and the simulation traces
that they may produce.

15Defined in this case as -type can_count() :: basic_utils:count()., i.e. a positive
integer.

16Defined in this case as -type amount() :: float()., i.e. a floating-point number.
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• his repletion duration, i.e. how soon, after having drunk a soda can,
he will feel thirsty again (e.g. exactly 2 minutes - he is deterministic), of
type duration()18

• his budget, i.e. how much money he initially has in his pocket (e.g. 35.0
euros) - of type amount()

So a deterministic thirsty customer will require these four parameters in
order to be created.

Finally, a stochastic thirsty customer will be constructed quite similarly,
except that its repletion duration will not be specified as a constant, but as
a random law. For example his repletion duration in minutes could be drawn
from a Gaussian law whose mean is 10, and variance is 2.

Its constructor shall thus reflect this: the repletion duration that had to be
set for the deterministic customer is replaced, in the construction parameters of
the stochastic one, by a random law, of type class_RandomManager:random_law()19.

3.2.3 From Construction Parameters To Constructors

Now that we have specified the construction parameters that will be used, we
will have to define in later steps how the state of these models will be stored.

Then only we will be able to define their constructors, which are the functions
that convert the former (the construction parameters) into the latter (the initial
state of the corresponding models).

But, for that, the implementation must be better known: the structure of
the state of the model will have to be determined first.

17An instance must know another instance ("have a reference onto it") in order to interact
with it ("send a message to it"). Technically, a reference onto another model instance is
named here an Actor PID, or PID (shorthand for Process Identifier, of type pid()). Actually
we have -type class_Actor:actor_pid() :: pid().

18Defined in this case as -type duration() :: unit_utils:minutes().

19Defined in class_RandomManager.erl.
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3.3 Implementation Files

3.3.1 Just A Bit of Computer Science To Better Understand The
Whole

3.3.1.1 Erlang Sim-Diasca is developed in the Erlang programming lan-
guage. This functional and concurrent language is a very good fit for problems
that can be solved thanks to a (possibly large) number of autonomous logical
processes running in a parallel and, possibly, distributed way (i.e. respectively
able to take advantage of multiple core and processors, and of multiple net-
worked computers).

Note
Have no fear, though: using Sim-Diasca does not require any knowledge
about parallelism, as it is fully hidden by the engine, and models are to
be written in a simple, fully sequential setting.
So the purpose of these more technical explanations is only to give to
the modellers a better view of the mechanisms involved underneath, as
dealing with black boxes may be uncomfortable.

In a few words, an Erlang program is made of several (Erlang) processes
that run concurrently and that communicate between them solely through the
sending of asynchronous (non-blocking) messages.

3.3.1.2 WOOPER Erlang thus provides an excellent multi-agent plat-
form, on top of which we added a thin layer named WOOPER, which provides
the language with object-oriented capabilities: WOOPER allows to define
classes that can inherit from others (e.g. the Cat class is a specialisation of
the Animal class), whose state is defined thanks to a set of attributes (e.g. a
cat may have an age attribute, of type positive integer, and a name attribute,
of type string), and that can define methods (i.e. class-specific, parametrised
signals that a class instance can receive and that will trigger operations based
on its state ; e.g. getAge/1, meow/1, declareBirthday/2).

3.3.1.3 Sim-Diasca Sim-Diasca has then been added on top of WOOPER,
turning a concurrent, object-oriented multi-agent platform into a simulation
engine for complex systems: the general simulation infrastructure has been
defined (e.g. simulation cases, models, scenarios, probes), and key services
have been implemented (like scheduling, interaction support, instance life cycle,
loading of the initial state, trace management, result management, deployment,
load-balancing).

The engine takes care of the full technical plumbing needed (e.g. proper
reordering of the actor messages so that simulation properties are respected),
hence Sim-Diasca users just have to comply with the engine’s conventions and
define their domain-specific simulation elements.

As a result, models can be defined based on a very small, simple subset of
the Erlang language. Each model will be a child class20 of the class_Actor
abstract class. Typically each model will define the attributes that make up for
its state, the actor methods it supports, and at least one constructor. Of course
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a given model can inherit from another, allowing for a flexible model hierarchy.

These models will then be able to take part to the simulations of interest.

3.3.2 In Practice For Our Soda-Example Case

As we have seen, three models will be needed. They will thus be implemented
in three corresponding classes:

• the SodaVendingMachine model will be implemented as class_SodaVendingMachine,
specified in the class_SodaVendingMachine.erl file

• the DeterministicThirstyCustomer model will similarly be implemented
in the class_DeterministicThirstyCustomer.erl file

• and of course the StochasticThirstyCustomer model will be in the class_StochasticThirstyCustomer.erl
file

(as mentioned, all these files are to be found in the mock-simulators/soda-test/src
directory)

The class_ prefix is mandatory to specify that we are defining a WOOPER
class (and not a basic Erlang module), and, as mentioned previously, the .erl
file extension corresponds to Erlang source files (i.e. that contains the Erlang
code corresponding to the module of the same name).

We can see that each model will be defined separately from the others, and
that it will be contained in a single, standalone source file.

For the sake of this simple test case, none of these models will inherit from
others: all three will be direct child classes of the class_Actor abstract class.

A slightly more complex alternative would have been to define an abstract
ThirstyCustomer model directly deriving from Actor, from which DeterministicThirstyCustomer
and StochasticThirstyCustomer would have then derived.

As we can see, there are often multiple ways of modelling the same target
system. We chose the simplest here.

20Be it a direct child class or not: indeed a model may inherit from other model(s) that will
themselves inherit, ultimately, of class_Actor.
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3.4 Initial State of the Simulation

Of course an engine cannot guess what the initial content of the simulation will
be (it will simply start from it, and make it evolve until reaching a termination
criterion), so we have somehow to specify the initial simulation state. This
information is to be specified in the simulation case.

Two methods are available for that: either we create initial instances thanks
to code, or thanks to data.

3.4.1 Creating Initial Instances Programmatically

For this test case, we want following basic initial setting to be simulated:

• there will two soda vending machines (referenced as SVM1 and SVM2)

• there will three thirsty customers: TC1 and TC2, who will be both using
SVM1, and TC3, who will use SVM2; TC1 and TC3 shall be deterministic
customers, while TC2 will be a stochastic one

This corresponds to the following setting:

This is a fairly simple simulation, where no actor is created or deleted in its
course. So it will begin and end with exactly the same five model instances (but
f course their respective state will change over the simulation).

These instances will be created programatically in this example: the simu-
lation case will explicitly create them, by code, one by one.

Actually, even if the implementation of the models is not known yet, we can
already determine the corresponding snippet that will be part of the simulation
case in order to create the expected initial instances.

We must just know that:

• initial instances must be created by using the class_Actor:create_initial_actor/2
static method, whose first parameter is the name of the class of the in-
stance to create (e.g. class_Incinerator), and whose second one is the
(ordered) list of the construction parameters for that upcoming instance

• in Erlang:
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– comments start with the % character

– as mentioned, a variable name starts with a capital letter (e.g. MyVariable)
but prefixing it by an underscore (e.g. _MyVariable) makes it a mute
variable, i.e. a variable that will be ignored by the compiler - so spec-
ifying it just serves documentation purposes

– a list is denoted by brackets, and may not be homogeneous (e.g.
MyList=["hello",42])

These programmatic creations translate as:

% First machine starts with 100 cans, 2 euros each:
SVM1 = class_Actor:create_initial_actor( class_SodaVendingMachine,

[ _FirstMachineName="First soda machine", _FirstInitialCanCount=100,
_FirstCanCost=1.0 ] ),

% Second machine starts with 8 cans, 1.15 euro each:
SVM2 = class_Actor:create_initial_placed_actor( class_SodaVendingMachine,

[ _SecondMachineName="Second soda machine", _SecondInitialCanCount=8,
_SecondCanCost=1.15 ], _PlacementHint=gimme_some_shelter ),

% First customer is deterministic, uses SVM1, is thirsty 2 minutes
% after having drunk, and has 35 euros in his pockets:
_TC1 = class_Actor:create_initial_actor(

class_DeterministicThirstyCustomer,
[ _FirstCustomerName="John", _FirstKnownMachine=SVM1,

_FirstRepletionDuration=2, _FirstInitialBudget=35.0 ] ),

% Second customer uses SVM1 too, yet is stochastic: he will be thirsty
% again between 1 and 7 minutes after having drunk, and has 40 euros in
% his pockets initially:
_TC2 = class_Actor:create_initial_actor( class_StochasticThirstyCustomer,

[ _SecondCustomerName="Terry", _SecondKnownMachine=SVM1,
_SecondRepletionLaw={ uniform, 7 }, _SecondInitialBudget=40.0 ] ),

% Third customer uses SVM2, is deterministic and thirsty 2 minutes
% after having drunk, and has 77 euros in his pockets:
_TC3 = class_Actor:create_initial_actor(

class_DeterministicThirstyCustomer,
[ _ThirdCustomerName="Michael", _ThirdKnownMachine=SVM2,

_ThirdRepletionDuration=2, _ThirdInitialBudget=77.0 ] ),

Scrupulous readers noticed that the creation of SVM2 actually relies on a
variation of class_Actor:create_initial_actor/2.

This static method, named class_Actor:create_initial_placed_actor/3,
takes an extra parameter: a placement hint. The engine will ensure that all in-
stances created with the same hint (here, the gimme_some_shelter atom21) will
be co-allocated, i.e. created on the same computing node (whichever it is).

This allows to deliver locally the numerous messages they exchange, which
is a lot more efficient than sending them through a network.
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Thus a user knowing that by design a set of instances will be tightly coupled
(for example, models of a modern human being and of his beloved smartphone)
is able to have them co-allocated for best performances, irrespective of how the
simulation case, depending on each simulation run, will be later dispatched on
a set of networked computing nodes.

Here, at least another initial instance should be created with gimme_some_shelter
for this hint to be useful.

3.4.2 Creating Initial Instances From a Data Stream

Of course "real" simulations tend to be far more demanding than the previous
case relying on five actors, and may involve literally millions of model instances.

It would be unlikely that such a large number of actors be created program-
matically; instead these actors should preferably be instantiated from a data
stream, typically a text file.

Sim-Diasca provides a simple, compact, flexible format to do so; as always,
initial creations are to be triggered from the simulation case.

In a few words, remembering that the construction parameters of a soda-
vending machine are [MachineName,InitialCanCount,CanCost], creating such
a machine would just boil down to having, in said data file, a line like:

{ class_SodaVendingMachine, ["Machine #1 read from data",
45,1.5] }.

If wanting to be able, in another point of the data stream, to refer to an
initial instance, then its creation shall be prefixed by the specification of a user
identifier ("My second machine" here), like in:

"My second machine" <- { class_SodaVendingMachine,
["Machine #2",4,1.4] }.

Then other initial instances could refer to that instance (i.e. know it at
construction time), like in:

{ class_DeterministicThirstyCustomer, [ "Cresus",
{user_id,"My second machine"}, 12, 16000.0 ] }.

Here, remembering that the construction parameters of a deterministic thirsty
customer are [CustomerName,KnownMachinePid,RepletionDuration,InitialBudget],
the customer named Cresus would detain a reference (translated into a PID at
construction time) onto the vending machine named Machine #2.

As a result, the customer will be able to interact with the machine from the
simulation start (since it will know the PID of this machine). Until it has done
so (thus letting the machine knows about its own PID), the machine will not be
aware of him (as here, by design, it has no means of knowing that customer).

In such an initialisation data stream, the order of the lines does not matter,
cyclic references are supported (so we could define two actors mutually aware
of the other), and comments (lines starting with %) and blank lines are ignored.

21An atom is an Erlang datatype that allows to define a symbolic constant. Typically
an atom begins with a lower-case letter (as opposed to variables). For example hello and
class_Cat are atoms.

17

http://erlang.org/doc/reference_manual/data_types.html#id64703


One may refer to the soda-instances.init data file as a full example.
For a simulation case to read initial instances from such an initialisation file,

the corresponding filename must be listed in the initialisation_files field
of the simulation_settings record, like in:

[...]
SimulationSettings = #simulation_settings{

[...]
initialisation_files = ["soda-instances.init"]
[...]

},
[...]

One may refer to the section 10.3 of the Sim-Diasca Technical Manual for
more information about instance creation.

3.4.3 What About Scenarios?

Instance creation has been discussed, and we saw how actors (model instances)
shall be created.

As mentioned in our mini-ontology about simulation (see chapter 3 of the
Sim-Diasca Technical Manual), the overall simulated world is the union of the
target system and of its context.

While the target system as a whole (e.g. a city) is described based on the
various models involved (e.g. buildings, roads, people), in a simulation this
target system might have to be evaluated on par with a context that may
interact with it (e.g. the country surrounding that city, the weather system
over its districts, the mayor and his team).

How shall this context be described, initialised and evaluated then? The
good news is that if, semantically, the target system and its context are different,
technically they have to be managed the same, notably to preserve simulation
properties.

Knowing that the context is made of scenarios exactly like the target system
is made of models, creating the context (which, in the general case, can be
disaggregated, can have a state, can interact with its parts and with the target
system) is to be done exactly as shown previously with the models.

So multiple scenarios may apply (e.g. regarding weather, pollution, popula-
tion) and multiple instances of them can coexist concurrently (e.g. one weather
cell per spatial subdivision of the city).

For example, like we defined class_SodaVendingMachine we could define
class_CanCostScenario, an horrible scenario that would reproduce a creeping
inflation and would make the price of soda cans steadily increase over time.

An instance of such scenario would be created from two construction parame-
ters, the (supposedly constant) monthly cost increase (e.g. 7%, hence 0.07) and
the list of the soda vending machines that would be affected by this inflation.

Then, taking a programmatic creation as an example, we could have:

_SC = class_Actor:create_initial_actor( class_CanCostScenario,
[ _MonthlyRate=0.07, _VendingMachines=[SVM1,SVM37] ] )
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We can thus see that nothing more than models is to be learned in order to
manage scenarios, since they are technically the same beast. As hinted by the
static method used here, which is defined in the context of the Actor class, the
engine does not even make a difference between models and scenarios.

Note
Implementing such a CanCostScenario scenario is left as an exercise
for the reader.
This would include going through the same steps as for the models that
we will implement here (defining state, behaviour, etc.), notably defining
the interactions between a cost scenario and the vending machines that
it drives.
For example, the specification could dictate that each month the sce-
nario would notify each machine it knows that its can cost increased,
here, of 7%, compared to the previous month.

3.4.4 Instanciation Example

Of course the two approaches (programmatic/data-based) for instance creation
can be mixed. One may refer to our simulation case of interest here (soda_loading_test.erl)
that creates 5 initial actors thanks to code, and 9 others thanks to the soda-instances.init
data file it refers to (in its initialisation_files field).

So we started the work on the models by establishing their construction
parameters, in order that the initial state of the simulation could be defined, in
the simulation case.

As now this case is almost complete, let’s discuss the last few bits necessary
to the implementation of a case, before continuing the work on the models.

3.5 Wrapping-Up the Simulation Case

Now the engine is correctly initialised (thanks to the three aforementioned set-
tings) and the initial state is defined. What remains to be specified then?

3.5.1 Initial Time and Date

By default, a simulation starts on the first of January of year 2000, at 00:00:00.
The Soda-Example relies on that default, but some cases will want to override
that.

The initial simulation timestamp can be changed by communicating a new
date and time to the root time manager22 (from the simulation case and, obvi-
ously, before the simulation is started).

First step is to retrieve a reference (a PID) onto this root time manager. It
can be obtained thanks to the PID of the deployment manager, which is the en-
try point of the simulation that was returned by the call to sim_diasca:init/3
that we already mentioned:

[...]
DeploymentManagerPid = sim_diasca:init(SimulationSettings,

DeploymentSettings,LoadBalancingSettings),
[...]
DeploymentManagerPid ! {getRootTimeManager,[],self()},
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Explaining this last line is a good occasion to introduce more information
about how Erlang is to be used.

Erlang processes communicate between them solely thanks to the sending of
messages. This sending is asynchronous: a process A having to send a message
M (whatever it is) to a process B (designated by its PID, stored in the BPid
variable) will simply have to specify: BPid ! M.

As mentioned, all Erlang processes live concurrently, i.e. they are all ex-
ecuted in parallel. Unless a process is looping over its code or blocked in a
receive clause (waiting for a message to be received), it will simply terminate.

This message (M) can be any Erlang term, for example the content of any
Erlang variable. Here, in our simulation case, the message that we saw is a
tuple (i.e. a fixed-length series of terms) of three elements23 (respectively here:
the getRootTimeManager atom, the empty list [] and the result of a call to the
self/0 function). This last function returns the PID of the current process,
namely here the one executing currently the simulation case.

A message is sent in a "fire and forget" manner: the sending process, A, will
transfer it to the Erlang runtime and directly continue with its next instructions,
without waiting for example that B receives it24.

When the simulation case sends the {getRootTimeManager,[],self()}
message to the deployment manager, this Erlang message will be interpreted
according to the WOOPER conventions: the getRootTimeManager request
method (i.e. a method returning a result, as opposed to oneway methods that do
not return anything) of the deployment manager will be executed (here with no
specific parameter, since the specified list is empty) and its result (here, the PID
of the root time manager) will be returned to the sender (here, the simulation
case, which specified its own PID for that, as last element of the triplet).

As a result, the PID of the (root) time manager will be returned by the
deployment manager and stored in the RootTimeManagerPid variable thanks
to:

RootTimeManagerPid = test_receive()

So now the simulation case knows the PID of the root time manager, and is
able to interact with it.

This allows us to finally specify the initial simulation timestamp discussed
in this section, simply thanks to:

% Let’s start on 2020, October 21st at 7h, 12 minutes
% and 10 seconds:

22The root manager is the one in charge of the overall scheduling of the simulation: in a
purely local setting (a single node), there is only one time manager, while in distributed mode
there is one local time manager per computing host, all of which synchronising themselves
with the root one. In a more general view, a scheduling tree of time managers, potentially of
arbitrary depth and shape, may exist.

23A tuple of three elements ({X,Y,Z}) is named a triplet. A tuple of two elements ({X,Y})
is named a pair.

24Once actually received (either locally or transparently through the network) this message
will be stored in the mailbox of B, which will be free to read it whenever it deems it appropriate.
Note that only the message itself (M) is delivered; as a result, by default B has no means of
determining what process sent it. If B needs this information, then A may send for example
the term {M,APid} instead (and of course B shall expect to receive such a pair).
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StartYear = 2020,

StartDate = {StartYear,10,21},
StartTime = {7,12,10},

RootTimeManagerPid ! {setInitialSimulationDate,
[StartDate,StartTime]}

So here we called the setInitialSimulationDate oneway method (we do
not expect any result when setting a date) of the root time manager to have its
initial simulation timestamp set.

3.5.2 Termination Criteria

The engine must of course have also some way of determining when the evalu-
ation of the simulation shall be stopped.

Multiple criteria can be defined, the first that applies will be the one to
actually end the simulation.

Typically the models and scenarios may decide of the termination (e.g. "stop
when we reach this total cost or this level of pollution", or "stop when its
combination of events happens").

The simulation case can also define such a criterion, typically to mark an
upper bound to the duration of the simulation.

Supposing we defined the initial time and date as described in the previous
section, we can now define also its maximum duration, i.e. conversely define the
final simulation time and date. This could be done thanks:

% We will end exactly 5 years later:
SimulationDurationInYears = 5,

EndDate = {StartYear+SimulationDurationInYears,10,21},
EndTime = StartTime,

RootTimeManagerPid ! {setFinalSimulationDate,
[EndDate,EndTime]}

So here the simulation will end no later (as other termination criteria may
be triggered first) than the 21st of October of year 2005, at 7h, 12 minutes and
10 seconds.

3.5.3 Starting the Simulation

The simulation can be started simply by requesting the root time manager to
do so:

RootTimeManagerPid ! start

This message will therefore trigger the start/1 oneway method of the root
time manager.

By the way, one may wonder why this call (i.e. the message sending) visibly
does not involve any parameter (e.g. we have BPid ! myMethod, not BPid !
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{myMethod,["hello",42]}) yet triggers start/1 (whereas we could expect it
would trigger start/0).

The reason is that the Erlang process corresponding to a WOOPER instance
keeps internally the state of this instance in a term (of type wooper:state()25),
and that this state is added as first argument when calling a method.

So, typically, here the message sending would trigger class_TimeManager:start/1
that way:

-spec start(wooper:state()) -> oneway_return().
start(State) ->

% Actual implementation of that method.
[...]

We can see first the type specification for this Erlang function (such a spec-
ification is optional, yet we recommend writing it down, in order to rely on
clearer code that moreover can be more thoroughly type-checked).

The function is named start, takes one parameter (the state that WOOPER
keeps and adds automatically) and returns as a oneway (meaning that it only
returns an updated state, kept by WOOPER, and no specific result).

The Soda-Example case uses a variation of this start oneway, defined as
class_TimeManager:startFor/3 and that can be called with:

% In (virtual) seconds:
SimulationDuration = 150,
RootTimeManagerPid ! {startFor,[SimulationDuration,self()]}

The corresponding definition is:

-spec startFor(wooper:state(),unit_utils:any_seconds(),pid())
-> oneway_return().

startFor(State,Duration,SimulationListenerPID) ->
% Actual implementation of that method.
[...]

Here, beside the usual state, the oneway specifies a duration (the maximum
one for the simulation) and a PID (here, of the simulation case).

The corresponding process will then be notified if/when the simulation suc-
cessfully ends, so the case uses afterwards:

receive

simulation_stopped ->
?test_info("Simulation stopped spontaneously, "

"specified stop tick must have been reached.")

end

25A wooper:state() variable is actually an associative table whose keys are the names
of the attributes of the instances, and whose values are the corresponding values (e.g. like
a dictionary in Python). For example, if a cat instance is defined by his name and fur
color, a cat state could comprise two name/value attribute pairs, such as {name,"Felix"} and
{fur_color,black}.

22



Indeed, when the simulation stops, the root time manager notifies all simu-
lation listeners of it by sending them a simulation_stopped message.

The simulation case is not a WOOPER instance (e.g. its module name,
soda_loading_test, is not prefixed with class_), hence Erlang messages are
not intercepted by WOOPER and managed as method calls. Therefore the case
can performs a standard Erlang receive to block and wait for such a message to
arrive and, here, send a trace message and continue with its execution.

3.5.4 Other Elements To Include in a Simulation Case

3.5.4.1 Initialisation & Shutdown We saw that the engine is to be ini-
tialised thanks to the sim_diasca:init/3 and the corresponding three record
settings.

Reciprocally, it shall be terminated at the end of the case thanks to a call
to sim_diasca:shutdown/0.

The simulation case must be defined in the run/0 function, in which any
Erlang code can be executed.

As the support of traces must be enabled (e.g. for the models, knowing that
the simulation case generally emits traces as well), the run/0 function shall start
with the ?test_start macro26 and end with the ?test_stop macro.

26A macro is a simple syntax shorthand, managed by the preprocessor, (taking care of the
first stage of the compilation process). A call to a macro begings with ?.
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3.6 Model Specification

Now, we will have to fill appropriately the three implementation files correspond-
ing to our three models of interest, based on their corresponding specification.

What must be specifically defined for a given model?

• how its state is defined, i.e. what is its inner structure

• its behaviour, i.e. how it is to act and interact

• its constructors, i.e. how it shall be created

• its probe usage, i.e. how it should produce results

State and behaviour are closely interdependent: the behaviour uses the state
to decide what the instance is to do next (e.g. if a cat is hungry, it may decide
to meow), while the state is reciprocally necessary to implement the behaviour
(e.g. if a cat can remember where its food usually is, it may first get there to
see whether there are some).

As a result they must be defined mostly together.

3.6.1 Behaviour

3.6.1.1 Specifying Implicitly we can anticipate that no can will be sold:

• from a vending machine having none left

• or to a customer that does not know that machine (as he is not even aware
of its existence)

• or to a customer who would not have enough money to buy a can from
that machine

No can should be sold to a non-thirsty customer, as at the first place it
should not have tried to purchase one.

We can fairly easily imagine the underlying "appicative protocol" ruling
the exchanges between a customer and a vending machine, i.e. the series of
interactions that can take place between these two.

One of the many ways to formalize a bit a high-level description of the
behaviour of each model is to use Finite State Machines (FSM) that interact.

The following graphical conventions are used here:
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Not specifying an event condition on a state transition means here that
the state change is time-based, i.e. it will occur automatically once a specific
duration (in simulation time) will be elapsed.

The two models are interacting, thus the two FSMs will interact as well,
based on message exchanges:

soda-ordering-interacting-FSM-committed.png

No inter-customer exchange is shown here: as an exercise, we could imagine
that an impoverished customer may try to borrow money from another he knows.

So, from each of these FSMs, we can derive the behaviour of the correspond-
ing model, from its initial logical state to all others. Transitions are clearly
related to internal changes (e.g. the thirst of a customer builds over time -
a.k.a. spontaneous behaviour) and external changes (denoted as the receiving
of an actor message, like when a customer is notified of the price of a can of the
vending machine.

3.6.1.2 Spontaneous Behaviour The spontaneous behaviour describes
how instances of a model behave, should their environment be fully passive.
This behaviour is implemented in the actSpontaneous/127 actor method, which
takes the instance state as input and returns an updated one.

For a customer like these ones, the spontaneous behaviour is rather simple:
if he does not know yet the cost of a can, it requests it, otherwise it manages
its thirst, i.e. it tries to order a can if the conditions are met.

The spontaneous behaviour of a soda vending machine is even simpler, as it
is empty: modelled as they are, these machines are purely passive, nothing will
happen unless their environment acts.

Other spontaneous behaviours might be considerably more complex: the
normal, default mode of operation of, say, an incinerator could be very rich
(with burners being driven, wastes being moved from a tank to another, etc.),
not to mention the intents that could drive an human being.

27As mentioned, the /1 means an arity of one, i.e. that this method takes only only pa-
rameter. More precisely, its type specification is -spec actSpontaneous( wooper:state() )

-> wooper:state().: the method is given a state, and shall return another one, possibly the
same, possibly updated.
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3.6.1.3 Triggered Behaviour Regardless of its spontaneous behaviour, a
model instance can also develop a triggered behaviour, i.e. one that is specifi-
cally activated by other model instances, i.e. by the receiving of a corresponding
actor message.

More precisely, any model (e.g. a cat one) can declare any number of signals
(named actor oneways) that it may understand.

For example, a cat may be stroked, brushed, yelled at, fed, etc. Each signal
(e.g. onBeingStroked) will lead to an actor oneway to be defined, to determine
what the cat would do in this occasion. A cat being stroked can meow, purr,
age twice as fast, explode, etc. depending on how we model it.

The definition of the function implementing an actor oneway includes at
least two parameters: the first one specifies the state at which the instance
receiving this message is, while the last parameter is a reference (a PID) onto
the model instance which sent this signal. Between these two, any number of
extra parameters can be listed (possibly none), so that that the signal can be
fully described.

For a soda vending machine, a client inserting some coins corresponds to the
sending of the orderSoda actor message, whose type specification is:

-spec orderSoda(wooper:state(),amount(),pid()) ->
class_Actor:actor_oneway_return().

We can see here that there is a single extra parameter, the exact amount of
money the customer inserted. This will allow the machine to determine if:

• there is at least one can still in store (by reading the current can count in
input state)

• the customer inserted enough money (by comparing the recorded can cost
with the amount of money supplied, respectively in the actor input state
and in the received actor message)

Based on that, the machine can determine whether a can must be sold.
Then its returned state shall (corresponding to the oneway return) reflect the
outcome, with one less can in store yet its amount of collected money being
increased of the cost of a can.

Once having updated the state of its instance, this orderSoda/3 actor
oneway shall also communicate back to the sender of the signal (here, a cus-
tomer), so that it can know whether the transaction succeeded; here there are
three possible outcomes:

• the transaction succeeded, the customer lost a bit of money (the cost of a
can) yet gained a can - thus sooner being less thirsty

• the transaction failed and the customer remains as thristy as he was:

– either because there was no can left in the machine

– or because the customer did not insert enough money

How can the vending machine notify the customer of these outcomes? Sim-
ply by sending him back an actor message (among, respectively, getCan/2,
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onNoCanAvailable/2, or onNotEnoughMoney/2), using the PID listed as last
parameter of the incoming actor oneway for that.

The union of all actor oneways declared by a model (the "signals" that can
be triggered on it) constitutes the triggered behaviour of this model.

3.6.1.4 What’s a Behaviour Anyway? Typically any behaviour (be it
spontaneous or triggered) boils down to any number of these actions:

• updating the instance state

• declaring that it should be spontaneously scheduled again in a specified
future

• sending an actor message to other model instances (i.e. engaging an in-
teraction)

• feeding a probe with result data

That’s it!
Let’s explain a bit further each of these terms.
Updating the state means having that actSpontaneous/1 or the triggered

actor oneway (e.g. getCan/2) change the value of any attribute set in the state.
So a deterministic thirsty customer having succeeded in buying a can should

have some way of keeping track of:

• the money he still has

• his level of thirst, i.e. in how much time he will be thirsty again

This may be done respectively with:

• a current_money attribute, of type amount(), a floating-point number of
euros

• a next_thirsty_tick, of type class_TimeManager:tick_offset() that
would be the next tick offset at which it will be thirsty again (more on
these timing considerations later)

Or course other attributes will be useful to maintain a proper state of this
deterministic customer:

• a reference onto the vending machine he knows (so that it can send actor
messages to it): a known_machine_pid attribute, of type pid()

• the cost of a can (that the customer requested prior to any ordering at-
tempt): an attribute named can_cost, of type amount() (for a given
machine, the cost of a can being constant through the whole simulation,
it is better to ask it once for all and to remember it, and then order
repeatedly cans on that basis)

• the duration between the moment a can is drunk and the customer is
thirsty again (repletion_duration, of type class_TimeManager:tick_offset());
for such a deterministic customer, it will be a constant
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• whether a soda is being ordered (transaction_in_progress, of type
boolean()) tells whether a transaction with a machine is in progress;
it is necessary for the customer to remember that it started a buying at-
tempt, otherwise, as the soda vending machine may take an arbitrarily
long time to answer, it may order again and again a can before receiving
its first feedback (i.e. actor message from the machine)

As mentioned, these deterministic customers are modelled so that they will
be thirsty again once a fixed duration (in simulation time) elapsed since they
drank their last soda can.

Implementing this behaviour is just a matter of:

• determining the repletion duration, in minutes, for the current determin-
istic customer; this is easy, as this is here a constant, specified amidst the
construction parameters of these customers:

construct(State,[...],RepletionDuration,[...] ) ->
[...]

• computing the number of ticks corresponding to this duration, by calling
the class_Actor:convert_seconds_to_ticks/228 function; in practice,
as this fixed, high-level duration is known from the start, it can be con-
verted once for all in a number of ticks directly from the constructor of the
customer model (this cannot be statically, as the corresponding number of
ticks depends on the simulation frequency separately set by the simulation
case):

TickRepletionDuration = class_Actor:convert_seconds_to_ticks(
60*RepletionDuration, ActorState ),

[...]
setAttributes( ActorState, [

[...]
{repletion_duration,TickRepletionDuration},
[...]

] ).

Then the repletion_duration attribute contains the number of ticks during
which a deterministic customer will not be thirsty once he drank a can.

Currently, in the implementation of the thirsty customers, each instance is
scheduled at each tick (as executeOneway(State,scheduleNextSpontaneousTick)
is used), and the purpose of the repletion duration is only to establish whether,
at some of these ticks, a soda can may be ordered.

Another implementation could have been to have thirsty customers be sched-
uled for a spontaneous behaviour only when they become thirsty again.

This could be done that way:

28The /2 designates an arity of 2, i.e. that this function takes two parameters, here the
duration, in seconds, and the state of the instance. It would then return the duration expressed
in simulation ticks.
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actSpontaneous(State) ->
CurrentTick = class_Actor:get_current_tick(State),
NextSpontaneousTick = CurrentTick + ?getAttr(repletion_duration),
ScheduledState = executeOneway(State,addSpontaneousTick,

NextSpontaneousTick),
[...]

More real-life, complex examples can also be found in the City-Example
case29, for various models (Incinerator, IndustrialWasteSource, ResidentialWasteSource,
Road, WasteTruck and WeatherCell). They all use the alternate, direct form
class_Actor:add_spontaneous_tick/2 to perform their scheduling.

These examples show how, in general (for spontaneous scheduling as well as
for interactions) model-level durations can be expressed in their most general
form (e.g. as mere seconds) yet can be easily converted in actual simulation
ticks, in order to implement any kind of scheduling.

A special case is the request to schedule the next tick (scheduleNextSpontaneousTick/1),
which may convey in some cases the notion of "immediate next step", rather
than a duration as such.

However in this case the use of (diasca-based) interactions would generally
be more appropriate, as they allow for arbitrarily complex exchange patterns
to be performed - through multiple logical moments yet in the same tick (hence
with no progress at all of the simulation clock).

3.6.1.5 Interaction Unless mentioned otherwise, we consider that an inter-
action is to obey a specific timing.

For example, we can consider that communications (e.g. a customer speaking
to another) are instantaneous, perceptions (e.g. a customer looking at a machine
to read the cost of one of its cans, supposedly displayed on the machine) as well,
but that other actions (e.g. a machine processing a can order) last for some
model-specific duration (e.g. 800 ms of virtual time may elapse before a valid
purchase results in a can being delivered to the corresponding customer).

The previous section showed how such timings should be expressed and used.

Note
As a rule of thumb: in a model, one should avoid expressing durations
directly in terms of ticks; models shall be defined irrespective of any
simulation frequency, as they may be involved in various simulations
with various temporalities (as dictated by simulation cases).
One should thus use higher-level durations (e.g. expressed in seconds,
or hours, etc.) and convert them in ticks only at runtime (possibly
from constructors). All kinds of timings (for scheduling and interactions
alike) can then be devised, knowing that, internally to models, ticks (as
tick offsets) are the time units of choice for all processings.

3.6.2 State

Note
A discussion about constructors will be added here.

29Located in mock-simulators/city-example/src.
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4 Defining Other Simulation Elements

Among the simulation elements that may be also defined in the context of a
simulation, there are:

• command files

• scenarios

• special probes

• extra services

Let’s discuss of these elements in turn.

4.1 Command Files

They allow to store the most common commands that are issued by the user
in the context of this case. Typically, rather than typing the full command to
executed said simulation, the user relies on a makefile (that we prefer to name
GNUmakefile) that associated to a make target (e.g. batch) the actual com-
mand to be run (e.g. make city_benchmarking_run CMD_LINE_OPT="--batch").

As a result, the user may simply type from the command-line:

$ make batch

and have his simulation be run.

4.2 Scenarios

Scenarios, as discussed in the Sim-Diasca ontology30, describe not the target
city itself (this is the role of models) but its context (for example the weather
system that may affect that city).

If, semantically, scenarios are very different from models, technically they
are the same beasts: like a model, a scenario in the general case is constructed,
has a state, may interact with others (be them scenarios or models), can produce
results (thanks to probes), etc.

So, as an unexpected added bonus, you are already fully able to write your
own scenarios!

4.3 Special Probes

Some projects may need to rely on specific data formats to express the simulation
results.

For example, whereas Sim-Diasca generates natively time-series in a format
that gnuplot can understand (see the class_Probe module) or that a Mnesia
database can handle (see the class_DataLogger module), some projects may
rely on a platform handling time series stored in a different format instead, like
HDF5 or netcdf-4.

30Please refer to the Sim-Diasca Technical Manual, section 3: "Let’s Start With A Short
Ontology" for more information.

30

http://www.gnuplot.info/
https://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/


One solution is, if appropriate, to post-process the native Sim-Diasca result
format in order to translate it to the format of choice. For the cases where it
would not be feasible or straightforward, the best option is to write a custom
probe, possibly relying on a binding to a library handling the target format.

An example of that is the class_CURTISProbe31, which implements its own
convention in terms of result storage and relies on a specific binding (allowing
here to make use in this case of the well-known, standard HDF5 library).

4.4 Extra Services

Sim-Diasca provides generic services, yet more advanced simulations may require
dedicated features.

For example, spatialised simulations have many geographic operations to
perform, or simulation of a telecom system may have many domain-specific
metrics like bandwidth and latency to compute.

These specific notions are not known of generic, lean and mean engines such
as Sim-Diasca. Two main approaches allow to alleviate this issue:

• a bit like for the custom probes, already-existing, third party software
elements can be reused to provide lacking services; for a spatialised simu-
lation it would typically involve integrating a GIS (Geographic information
system), possibly accessed to thanks to REST calls made from the models

• specialised layers can be defined between Sim-Diasca and the targeted
models; for example, for the CLEVER project, a telecom layer was built
on top of Sim-Diasca, providing base classes for all the related business-
specific models (e.g. the layer was comprising notions of communicating
device, network interfaces, packet router, etc.); then the domain-specific
models could be defined more easily by re-using that adaptation layer, and
could then directly manipulate bandwith, latency, routing elements, etc.

5 Conclusion

By going through this modelling guide, we recreated elements of an example
of a simulation that actually exists, and can be found in the free software ver-
sion of Sim-Diasca. The full code of this example case is indeed located in
mock-simulators/soda-test/src.

More advanced users are advised to have a look also to the City-Example
case, located in mock-simulators/city-example/src, for a considerably more
complex and demanding example case.

We hope that writing simulations will be easier thanks to the examples pro-
vided with the Sim-Diasca code base and thanks to this guide oriented towards
modellers.

As always, any (constructive!) feedback is welcome (for that use the email
address at the top of this document). Should some point remain unclear, please
feel free to contact us, as we try to provide support on a best-effort basis.

31The CURTIS probe is a part of the sustainable-cities case, which is not provided with
the free software version of Sim-Diasca (case for internal use only).

31

https://github.com/Olivier-Boudeville-EDF/erlhdf5
https://en.wikipedia.org/wiki/Geographic_information_system
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