
Sim-Diasca Developer Guide

Organisation: Copyright (C) 2008-2024 EDF R&D

Contact: olivier (dot) boudeville (at) edf (dot) fr

Author: Olivier Boudeville

Creation Date: February 2009

Lastly updated: Tuesday, February 13, 2024

Version: 2.4.7

Status: Stable

Website: http://sim-diasca.com

Dedication: To the Sim-Diasca developers

Abstract: This document summarizes the main conventions that
should be respected when contributing code to Sim-Diasca and/or
making use of Sim-Diasca.

1

http://sim-diasca.com

Table of Contents

1 Sim-Diasca Code Conventions 3
1.1 Foreword . 3
1.2 Text Conventions . 4
1.3 General View of the Software Stack 6
1.4 Erlang Conventions . 7
1.5 Myriad Conventions . 12
1.6 WOOPER Conventions . 12
1.7 Traces Conventions . 14
1.8 Sim-Diasca Conventions . 16

1.8.1 Thou Shalt Not Bypass The Simulation Engine 16
1.8.1.1 Proper Inter-Actor Communication 16
1.8.1.2 Proper Actor Life-Cycle 16

1.8.2 Actor Scheduling . 26
1.8.2.1 Basics . 26
1.8.2.2 Actor Scheduling 28
1.8.2.3 Planning Future Spontaneous Behaviour 28

1.8.3 Data Management . 29

2 Sim-Diasca Implementation Spotlights 31
2.1 About Erlang Nodes and Simulation Identifiers 31

2.1.1 How Many Erlang Nodes Are Involved in a Simulation? . 31
2.1.2 How Are Launched the Erlang nodes? 31
2.1.3 What is the Simulation Instance Identifier? 32
2.1.4 How Erlang nodes are named? 32
2.1.5 How Is It Ensured that No Two Simulations Can Interfere? 33

3 Sim-Diasca Technical Gotchas 34
3.1 The Code Was Updated, Yet Seems To Linger 34

4 Developer Hints 35
4.1 Choosing The Right Datastructures 35
4.2 Running Bullet-Proof Experiments 37
4.3 Using Type Specifications With Sim-Diasca 39

4.3.1 Type Specifications: What For? 39
4.3.2 Type Specifications: How? 39

4.3.2.1 Prerequisites . 39
4.3.2.2 Expressing Type Specifications 40
4.3.2.3 Checking Type Specifications 41

4.3.3 References . 42

5 Credits 43

6 What To Do Next? 43

2

Note
This document intends to gather information mostly aimed at Sim-
Diasca maintainers or contributors - not users. Most people should read
the Sim-Diasca Technical Manual first, and possibly the Sim-Diasca
Modeller Guide as well.
However we require that the in-house authors of any simulation element
making use of Sim-Diasca’s services (e.g. models, simulation cases, etc.)
respect the conventions presented in the current document, for the sake
of the clarity and homogeneity of the code base.
As we believe that these conventions may benefit to third-party users,
we share them as well.

1 Sim-Diasca Code Conventions

1.1 Foreword

At all levels of the technical architecture, we tried to enforce a few conventions,
that are detailed below.

Some of them are necessary, others are mere good practices, a few are ar-
bitrary (notably in terms of style), but we believe that, for the sake of clarity
and homogeneity, all of them should be respected in the code of the Sim-Diasca
stack, and preferably also in code using it (typically models, tools, etc.).

(see the credits section about the comic strips)
We believe also that these conventions have been fairly well enforced in our

own Sim-Diasca code base (which thus might be used as an example thereof).
Please tell us if you do not think so, or if you identified interesting other con-
ventions that could be listed here and applied.

3

1.2 Text Conventions

We now recommend to directly stick to the Myriad ones [mirror].

4

http://myriad.esperide.org/#myriad-main-conventions
https://olivier-boudeville.github.io/Ceylan-Myriad/#myriad-main-conventions

Just ensure you typed everything properly:

5

1.3 General View of the Software Stack

We see Sim-Diasca as a stack of layers, so that a given layer only depends on
the ones below it, and never from the ones above.

Top-to-bottom, we have:

Layer Name Role
Sim-Diasca This simulation engine
Ceylan-Traces The distributed trace system
Ceylan-
WOOPER

The object-oriented layer

Ceylan-Myriad The base library offering general-purpose ser-
vices

Erlang The base language and environment

Thus, there is not upward dependency, for example WOOPER depends on
Myriad and Erlang but not on Traces or on Sim-Diasca.

The other way round, bottom-up one can see:

• Erlang, which provides the way of defining and running concurrently a
large number of processes

• Myriad, which gathers all common services that are needed, in terms of
data-structures, lower-level constructs, most frequent processings, etc.

• WOOPER, which transforms Erlang processes into instances of classes
with multiple inheritance, still running concurrently

• Traces, which allows each distributed instance to send appropriate traces

• Sim-Diasca, which transforms a distributed object-oriented application
into a simulation

On top of that stack, which provides the simulation engine, there are at
least:

• a set of models integrated into the Sim-Diasca framework

• a simulation case, which makes use of these models and organises them in
the context of a scenario to be simulated, a virtual experiment

The simulation engine being itself absolutely generic as long as discrete-time
simulations are involved, it may be convenient to define, on top of Sim-Diasca
and below the actual models themselves, a domain-specific layer that specialises
the framework in order to ease the development of models.

For example, a telecom-centric simulation could define building blocks like
service queues, and mother classes like communicating nodes, network inter-
faces, packet loss models, etc.

6

https://www.erlang.org/
https://olivier-boudeville.github.io/Ceylan-Myriad/
https://olivier-boudeville.github.io/Ceylan-Myriad/
https://olivier-boudeville.github.io/Ceylan-Myriad/
https://olivier-boudeville-edf.github.io/Sim-Diasca/

1.4 Erlang Conventions

The most obvious conventions are:

• the settings of the build chain should be used (e.g. with regard to com-
piler flags) and adapted/completed if needed; the (possibly-specialised)
GNUmakesettings.inc, GNUmakerules.inc and GNUmakevars.inc files
should be relied upon

• no warning should be tolerated; anyway now our build chain treats
warnings as (blocking) errors

• test cases should be developed alongside most if not all modules1; e.g.
if developing class_X.erl, then probably the class_X_test.erl testing
code should be developed, after or, preferably, before the implementation
of the tested code; test success should be evaluated automatically, by the
code (e.g. thanks to pattern matching), not by the person running the
test (e.g. who would have to compare visually the actual results with the
expected ones); in some cases, only integrated tests can be devised in
practice; tests should be gathered in test suites, that should be runnable
automatically (make test) and fail loudly (and in a blocking manner) at
the first error met

• multiple levels of quality documentation should be made available
to the code user, and probably be written in parallel to the code; there
are at least three documentation levels:

– lower-level documentation: code should always be densely com-
mented, with headers added to all functions, inlined comments (not
paraphrasing the code) and self-describing symbols: function names,
variable names (e.g. RegisteredState=... to be preferred to NewState=...),
etc.; more generally all names shall be long enough to be descriptive
(clarity preferred over compactness); type specifications also pertain
to this low-level documentation effort

– higher-level design and/or implementation notes: they should
be available as a set of paragraphs in each source file, before the
function definitions, to help understanding how the features are im-
plemented, and why

– high-level developer and user documentation should be made
available, targeting at least a PDF output, possibly offering a wiki
access as well

• more generally, comments should be clear and precise, numerous, rich
and complete (overall, in terms of line counts, we target roughly 1/3 of
code, 1/3 of blank lines and 1/3 of comments); all comments shall be
written in UK English, start with a single % and be properly word-wrapped
(use meta-q with our Emacs settings)

7

• indentation should respect, as already explained, the 80-character width
and 4-space tabulation; however the default built-in Erlang indentation
mode of emacs can hardly be used for that, as it leads to huge width
offsets (the elisp code for the emacs indentation will be modified for our
need, in the future); the Sim-Diasca conventional indentation should be
enforced, preferably automatically (e.g. thanks to emacs)

• spacing homogeneity across Sim-Diasca source files should be enforced;
for example three blank lines should exist between two function definitions,
one between the clauses of any given function (possibly two in case of
longer clauses), arguments should be separated by spaces (e.g. f(X) ->
..., not f(X) -> ...), especially if they are a bit complex (f(A={U,V},
B, _C) -> ..., not f(A={U,V},B,_C) -> ...)

• see the Using Type Specifications With Sim-Diasca section for type-
related conventions; at least all exported functions shall have a -spec
declaration; if an actual type is referenced more than once (notably in a
given module), a specific user-defined type shall be defined; types shall
be defined in "semantic" terms rather than on technical ones (e.g. -type
temperature() :: ... than float()); developers may refer to, or en-
rich, myriad/src/utils/unit_utils.erl for that

• the latest stable version of Erlang should be used, preferably built
thanks to our myriad/conf/install-erlang.sh script

• the function definitions shall follow the same order as the one of their
exports

• helper functions shall be identified as such, with an (helper) com-
ment; the same stands for all other kinds of functions mentioned in next
sections

• if an helper function is specific to an exported function, it shall be de-
fined just after this function; otherwise it should be defined in the helper
section, placed just after the definition of the exported functions

8

• defining distinct (non-overlapping), explicit (with a clear enough name),
numerous (statically-defined) atoms is cheap; they are generally to be
involved in at least one type definition

• the use of case ... of ... end should be preferred to the use of if
(never used in our code base)

• we also prefer that the various patterns of a case are indented with exactly
one tabulation, and that the closing end lies as much as possible on the left
(e.g. if having specified MyVar = case ... end, then end should begin
at the same column as MyVar); the same applies to try ... catch ...
end clauses

• when a term is ignored, instead of using simply _, one should define a
named mute variable in order to provide more information about this
term (e.g. _TimeManagerPid); one should then to accidental matching of
such names

• some conventional variable names are, and may be, extensively used: Res
for result, H and T for respectively the head and tail of a list

• when needing an associative table, use the table pseudo-module; if
needing to store such an instance in an attribute, its name shall be suffixed
with _table (e.g. road_table); a key/value pair shall be designated as a
table entry (e.g. variable named as RoadEntry)

• regarding text:

– if a text is to be rather static (constant) and/or if it is to be exchanged
between processes, then it should be a binary, and its type shall be
declared as text_utils:bin_string()

– other, a plain string (string()) shall be used

• when defining a non-trivial datastructure, a record shall be used (rather
than, say, a mere ad-hoc tuple), a corresponding type should be then de-
fined (e.g. a foobar record leading to a foobar() type), and a function
to describe it as text shall be provided (e.g. -spec foobar_to_string(foobar())
-> string())

– mute variables should be used as well to document actual parame-
ters; for example f(3,7,10) could preferably be written as a clearer
f(_Min=3,_Max=7,_Deviation=10)

Note
Mute variables are however actually bound, thus if for example there
is in the same scope _Min=3 and later _Min=4, then a badmatch will
be triggered at runtime; therefore names of mute variables should be
generally kept unique in a given scope.

1In terms of directories, the source of modules (*.erl) shall be in src, the includes (*.hrl)
in include, the tests (*_test.erl) in test - in each case, either directly in the specified
directory, or at any depth in nested subdirectories.

9

For the sake of clarity, we try to avoid too compact code, and code too poorly
understandable for everyone but its original creator. Thus we want to enforce
a minimum ratio of blank lines and comments.

For example, as of May 2017, we have for the Sim-Diasca stack (i.e. from
myriad to sim-diasca):

• 326 source files (*.erl), 86 header files (*.hrl)

• a grand total of 178980 lines: - 57814 of which (32.3%) are blank lines -
56548 of which (31.5%) are comments - 64618 of which (36.1%) are code

These information can be obtained by running make stats from the root of
a Sim-Diasca install.

Other recommended good practices are:

• peer review: before committing code, or before issuing a release, it
should be reviewed by someone who is not the one who introduced the
corresponding changes

• write type specifications and run regularly Dialyzer

Another piece of advice we maybe should apply more frequently:

10

Of course we cannot stress enough that securing a sufficient code
quality is essential for the other developers to come, and also of-
ten even for one’s future self; for that reason we recommend pair-
programming, or at least the aforementioned review before new
sources are incorporated in the code base:

11

1.5 Myriad Conventions

The general goal is to collect recurring generic lower-level patterns and solutions
in that layer.

When an helper mechanism is already available in Myriad, it should be used
instead of being defined multiple times in the software stack.

Reciprocally, when a well-defined generic sequence of instructions is used
more than once, it should be integrated (commented and tested) in that Myriad
layer.

Main services are:

• support of generic data-structures, like hashtables, option lists, etc. (in
data-management)

• some helpers for GUI programming (in user-interface)

• support of some math-related operations, mostly linear (in maths)

• various helpers, for system-related operations, text management, network
operations, executable support, unit management, etc. (in utils)

For further information, please refer to the Technical Manual of the
Myriad Layer2.

1.6 WOOPER Conventions

One should respect the WOOPER conventions (please refer to the WOOPER
documentation).

For example, oneway, request or helper function (possibly with qualifiers
like const) should be specified in each method header.

WOOPER type conventions shall be used as well, for example:

-spec getFoo(wooper:state()) -> request_return(foo()).

Method names should be spelled in CamelCase (e.g. getColorOf, not get_color_of).
Variables bound to a WOOPER state shall have their name suffixed with

State; e.g. NewState, UpdatedState, etc.
To better discriminate between methods and functions (e.g. helpers):

• the latter shall have their name spelled in snake_case (e.g. update_table,
not updateTable)

• should an helper function have among its parameters the state of an in-
stance (type: wooper:state(); typically either to access directly to at-
tributes or to use trace primitives), this parameter should be listed last
(e.g. update_table(X,Table,State) instead of update_table(State,X,Table)),
so that helpers can be more easily discriminated from member methods,
which have such a state as first parameter

• all class-specific attributes shall be documented in a proper class_attributes
define, so that their name, type, meaning and role are described

2It can be generated by running make full-doc from myriad/doc.

12

http://wooper.esperide.org/

Example:

% The class-specific attributes of an instance of this class are:
-define(class_attributes, [

{ current_step, step_count(),
"current step at which the experiment is" },

[...]

]).

13

1.7 Traces Conventions

So that log messages can be kept track of over time, a distributed trace sys-
tem is provided, with relevant components: trace emitter, listener, supervisor,
aggregator, etc.

At implementation time, one just has to choose:

• the trace channel on which the trace should be sent, among: fatal, error,
warning, info, trace, debug (from highest priority to lowest)

• if a constant message is to be sent (e.g. ?warning("This is a static
message")), or if it is determined at runtime (e.g. ?warning_fmt("There
are ~B apples.",[Count]))

• if the trace is sent from a method (e.g. ?info("Hello")) or from a con-
structor (e.g. ?send_info(MyState,"Hello") where MyState is a state
returned, directly or not, by a class_TraceEmitter constructor)

• there are other, less commonly used, information that can be specified, as
the categorisation (_cat variations, like in ?debug_cat("Hello","core.greetings")),
additional timing information (_full variations, like in ?trace_full("Bye","core.greetings",_Tick=121)),
etc.

Once building the simulator, one can configure:

• whether traces should be disabled or enabled (the default), by commenting-
out appropriately -define(TracingActivated,). in class_TraceEmitter.hrl

• if enabled, what kind of trace output will be generated, among LogMX-
compliant (a third-party log supervisor integrating a trace parser of our
own), PDF output, or raw text output; this is to be set in traces.hrl
(default is: LogMX-compliant)

At execution time, the command-line option --batch can be specified, which
causes all interactive elements to be disabled, including any trace supervisor (like
the LogMX browser). It can be specified that way:

$ make my_case_run CMD_LINE_OPT="--batch"

For convenience, often the developer defines in his shell environment file
export BATCH=’CMD_LINE_OPT="--batch"’, so that he can make use of this
shorthand instead:

$ make my_case_run $BATCH

(this is very convenient when debugging brand new code: before having to
peer at the traces, runtime errors may occur, and the relevant information, like
the stack trace, the actual parameters and the current instance state will be
displayed on the console)

The trace system has been designed with performance and scalability in
mind, thus if disabled no per-instance overhead penalty will be incurred at all,
and, if enabled, efforts have been made so that as large as possible a number of
traces are to be managed by the trace system, for any given resources in terms
of network, memory and processing.

Should numerous traces be sent, it could be interesting to create more than
one instance of the trace aggregator class, for example:

14

• one for the technical traces, to ease lower-level debugging

• one for the model-centric traces, to ease the debugging of the behaviours
and interactions of actors

An overloaded trace aggregator will notify the user, so that the verbosity of
later runs can be decreased.

15

1.8 Sim-Diasca Conventions

In this section the conventions to be respected with regard to Sim-Diasca are
detailed.

1.8.1 Thou Shalt Not Bypass The Simulation Engine

The Sim-Diasca services should be used whenever applicable. Notably, bypass-
ing the simulation mechanisms (for actor creation, communication, deletion,
etc.) is absolutely prohibited, as essential properties, like the respect of causal-
ity, would then be lost.

Such a short-time "simplification" would be considered still more harmful
than others like the use of the goto statement in C:

1.8.1.1 Proper Inter-Actor Communication To implement the com-
munication between two actors, neither plain Erlang messages nor arbitrary
WOOPER messages can be used: as we aim to develop a distributed simula-
tion, as opposed to a mere distributed application, we have to make use of the
Sim-Diasca mechanisms for automatic inter-actor message reordering.

This means that, for inter-actor communication purpose, only the following
helper functions shall be used:

• for the vast majority of cases: class_Actor:send_actor_message/3

• for the very special case where the same message is to be sent to a very large
number of other actors (typically dozens of thousands), from an instance
of class_BroadcastingActor: one should use send_actor_message/3,
send_actor_messages/3 or send_actor_messages_over_diascas/3, as
defined in the latter class

Of course one may rely on higher-level specialization layers, making use of
Sim-Diasca but providing another API. The point is that inter-actor messages
should be ultimately managed by Sim-Diasca, rather than being sent directly
with the ! operator provided by Erlang.

1.8.1.2 Proper Actor Life-Cycle Very similarly, life-cycle of actors should
be ultimately managed by the engine, not directly by the developer: the creation
and termination of actors must respect the conventions detailed below.

1.8.1.2.1 Proper Actor Creation An actor can be created either ini-
tially (before the simulation is started) or at simulation-time (i.e. in the course
of the simulation), as detailed in next sections.

16

Calling directly (i.e. from the user code) any spawn variation or any WOOPER
new variation (e.g. remote_new_link) is totally prohibited: we must rely on
the Sim-Diasca mechanisms, and not attempt to bypass them.

The actual creation will be performed by the load balancer, on a computing
node of its choice, and the placement will be fully transparent for the model
writer.

Whether an actor is initial or not, construction parameters are to be supplied
for its creation.

These construction parameters will be specified as a list, for example [_Age=5,_Gender=male].
The matching constructor must then be in the form of:

construct(State, ActorSettings, P1, P2) ->

Note that two additional initial parameters appear here:

• State (whose type is wooper:state()), which corresponds to the engine-
supplied blank initial state this instance starts with

• ActorSettings (whose type is class_Actor:actor_settings()), which
will be provided automatically by the load balancer too, at runtime; this
parameter is just to be listed by the model developer in the constructor
of the model, when calling its parent constructor which inherits, directly
or not, from class_Actor, as shown below.

So a typical constructor for a model class_M1, inheriting from, for example,
class_SpecialisedActor and from classes class_C1 and class_C2, could be:

% Constructs a new instance of class_M1:
construct(State, ActorSettings, P1, P2, ...) ->

% Will result ultimately in a call to
% class_Actor:construct(State, ActorSettings, AName):
SpecialisedState = class_SpecialisedActor:construct(State,
ActorSettings, ...),

C1State = class_C1:construct(SpecialisedState, P1, ...),
C2State = class_C2:construct(C1State, P1, P2, ...),
[...]
FinalState.

Note how states are chained (one being built on top of the other), from the
blank, initial one (State) to the one corresponding to the complete initial state
of the instance (FinalState), as returned by the constructor.

We strongly encourage the use of type specifications, which would be here:

-spec construct(wooper:state(), class_Actor:actor_settings(),
type_of_p1(), type_of_p2()) -> wooper:state().

1.8.1.2.1.1 Initial Actor Creation

1.8.1.2.1.1.1 Basics
An abstraction API is available to create from a simulation case initial

actors, i.e. bootstrapping actors, which are created before the simulation is
started.

17

It is generally based on the class_Actor:create_initial_actor/2 static
method:

ActorPid = class_Actor:create_initial_actor(ActorClassName,
ActorConstructionParameters)

For example, in my_example_test.erl we could have:

ActorPid = class_Actor:create_initial_actor(class_PinkFlamingo,
[_Age=5, _Gender=male])

Should multiple initial actors have to be created, using this method would
be less than optimal, as the load-balancer would be looked-up in the process
registry at each call of this static method, which, if creating thousands of actors
in a row, could induce some overhead.

Therefore a more efficient alternative is available, the class_Actor:create_initial_actor/3
static method, for which the PID of the load-balancer is to be specified as a pa-
rameter, having thus to be looked-up only once in the simulation case:

LoadBalancerPid = LoadBalancer:get_balancer(),
FirstActorPid = class_Actor:create_initial_actor(Class1, Parameters1,

LoadBalancerPid),
SecondActorPid = class_Actor:create_initial_actor(Class2, Parameters2,

LoadBalancerPid),
[...]

1.8.1.2.1.1.2 Multiple Parallel Creations
A typical use case is to load from any source (file, database, etc.) a set of

construction parameters for a large number of instances.
For larger cases, creating actors sequentially may lead to very significant

simulation start-up durations.
In such cases, class_Actor:create_initial_actor/1 should be used in-

stead : then a smart, parallel, batched creation will be done, allowing to create
all instances as efficiently as reasonably possible.

This results in a considerably faster creation of the initial state of the simula-
tion, provided there is no dependency between the created actors in the specified
batch. Otherwise actors should be created in multiple stages, to ensure that the
PID of the prerequisite actors is already known and can be specified at a later
stage, when in turn creating the actors whose constructor requires these PIDs.

For non-programmatic, file-based initialisation, we strongly recommend us-
ing our rather advanced loading system, as described in the technical guide (see
its Sim-Diasca Management of Simulation Inputs section).
1.8.1.2.1.1.3 Synchronicity

All initial operations (i.e. all operations to be triggered before the simula-
tion starts) must be synchronous, to ensure they are indeed finished once the
simulation is run: the simulation case has to wait for their completion before
greenlighting the start the simulation.

This involves the use of:

18

• synchronous creations, which is already enforced by the aforementioned
class_Actor:create_initial_actor{2,3}, etc. static methods

• requests rather than oneways, once instances are created and the simu-
lation case intends to act upon them (for example in order to link them
together); requests must be used, not necessarily in order to retrieve a
potential result, but at least to ensure that they are fully processed before
the simulation starts (hence the need of using a receive; from the simula-
tion case, one shall prefer using test_receive/0 or app_receive/0 - both
exported by the Traces layer - rather than classical receive constructs,
see below)

Otherwise there could be a race condition between the end of these initial
operations (which may take any time) and the triggering of the simulation start
(a message which, without flow control, could be sent too early by the simulation
case).
1.8.1.2.1.1.4 Nested Creations

When creating initial actors, we might find useful to create an actor A that
would create in turn other initial actors, and so on (nested creations).

This is possible, however these creations should not be directly done from
the constructor of A, as this would lead to a systematic deadlock by design3.
Some solutions have been identified, but they were not satisfactory enough4.

Instead, the constructor of A should just create A and return, and the actual
creations of other actors should be triggered by a subsequent method call (a
request, not a oneway, as explained in the Synchronicity section).

For example, in my_creation_test.erl, we could have:

[...]
ActorAPid = class_Actor:create_initial_actor(ClassA,

ParametersForA),
ActorAPid ! { createDependingActors, [], self() },
actors_created = test_receive(),
[...]

Note that test_receive/0 corresponds to a safer form than receive {wooper_result,
R} -> R end. It is logically equivalent, but immune to interfering messages that
could be sent to the simulation case by other Sim-Diasca services (e.g. notifica-
tions from the trace supervisor).
1.8.1.2.1.2 Simulation-time Actor Creation

3A deadlock will occur because the load balancer will be blocked waiting for the creation of
actor A to finish, thus paying no attention to the requested creations in-between, while they
themselves are waited for the creation of A to complete.

4A non-blocking solution could be to have a load balancer that does not wait for an instance
to acknowledge that its spawn is over: the load balancer would thus return immediately and
keep track of the spawn_successful message (interpreted as a oneway) that it should receive
before the simulation starts.
However in that case no total order in actor creation seems to be possibly guaranteed: actor

A could create B and C, which themselves could, after some processing, create others actors.
As a consequence B and C would create them concurrently, and, depending on various con-
textual factors, their creation requests could be received by the load balancer in no particular
order, leading to a given actor bearing different AAI from one run to another. Nested creations
would thus be obtained at the expense of reproducibility, which is not wanted.

19

Once the simulation is started, an actor can only be created by another one
(for example it then cannot be created directly by the simulation case itself),
so that a correct simulation time can be enforced.

The creating actor should call the class_Actor:create_actor/3 helper
function for that creation, like in:

CreationState = class_Actor:create_actor(Classname,
ConstructionParameters, State),

[...]

If called at simulation timestamp {T,D}, then the specified actor will be
actually created (by the load-balancer) at {T,D+1}, and at {T,D+2} the creating
actor will know (as its onActorCreated/5 method will be called) the PID of
the just created actor.

The creating actor - and any other actor that will be given the returned
PID - can then freely interact with the created actor (of course thanks to actor
messages), exactly as with any other actor (once its creation is performed, there
is no difference between an actor created in the course of the simulation and an
initial actor).
1.8.1.2.1.3 Creation With Placement Hints

Regardless of whether a creation is to happen initially or on the course
of the simulation, it is often a lot more efficient to ensure that sets of actors
known to be tightly coupled are created on the same computing host (i.e. are
co-allocated).

Otherwise these actors would be scattered by the load balancer on multi-
ple computing hosts according to its placement policy, i.e. regardless of their
relationship (since the load balancer has no a priori knowledge about the in-
teractions between models), which would lead in the general case to a useless
massive network overhead, and thus to simulations that would be considerably
slowed down.

Sim-Diasca offers a way of forcing co-allocation (i.e. to ensure that a set of
actors will be in all cases created on the same computing host, no matter of
which host it is), thanks to placement hints.

A placement hint can be any Erlang term (atoms are generally used for
that purpose), that can be specified whenever an actor is created. The engine
guarantees that two actors created with the same placement hint will end up
being instantiated (by the load balancer) on the same computing host5.

So Sim-Diasca provides a counterpart to its basic creation API, whose func-
tions are just expecting one extra parameter, the aforementioned placement
hint:

• class_Actor:create_initial_actor/{2,3} have class_Actor:create_initial_placed_actor/{3,4}
counterparts

• class_Actor:create_actor/3 has a class_Actor:create_placed_actor/4
counterpart

Except the hint specification, these functions work exactly as their counter-
part (e.g. w.r.t. the call to onActorCreated/5).

5Unless a compute node was lost in the course of a simulation that recovered from it.

20

For example, if devices in a house were to be modelled, and if a large num-
ber of houses was to be simulated, then for house 437, the placement hint (as
an atom) house_437 could be specified for the house creation, as well for the
creation of each of the devices it will contain.

That way they would be all created and evaluated on the same computing
host, exchanging numerous local messages with no need for costly and slow
networked messages.

21

1.8.1.2.2 Proper Actor Termination Removing an actor from the
simulation is a bit more complex than inserting a new one, due to pending
inter-actor relationships that may interfere with the actor termination.

An actor A should not decide that another actor B is to be removed imme-
diately from the simulation. Notably, sending a delete message to B means
just calling directly the WOOPER destructor and therefore bypassing the Sim-
Diasca simulation layer and making the simulation freeze or fail on error6.

Instead the actor A should send an actor message to actor B (if ever B is
not just to terminate solely on its own purpose), resulting on the corresponding
oneway of B to be triggered. Then B may or may not choose to terminate,
immediately or not. Alternatively B may, by itself, determine it is time for it
to be removed from the simulation.

In any case, B will decide that it terminates, at {T,D}. The main conditions
for its deletion is that:

• there is no more spontaneous action that is planned for it: actor B should
not plan anymore a future action, and it should withdraw from its time
manager any already-planned future action(s); on termination this will be
checked by the time manager, which would then trigger a fatal error if at
least one spontaneous action was found for the terminating actor

• no other actor will ever try to interact with it (i.e. with B) once it will have
terminated; for that, usually B has to notify other actors of its termination,
so that they can "forget" it (to ensure that they will never attempt to
interact with B again); it is up to the corresponding models to ensure of
such an agreement, based on the deferred termination allowed by the API
detailed below

To emphasize more, the model developer should ensure that, once an actor
is terminated, no other actor expects to interact with it anymore (i.e. that
all other actors should stop sending actor messages to it). The objective is
therefore to delay appropriately the triggering of the termination of an actor
until all possibilities of outside interactions are extinguished.

The smallest duration for a termination procedure cannot be automatically
determined, as the PID of the terminating actor (B) can have been transmitted
in the meantime from actors to actors. Therefore it is the duty of the developer
to ensure that a terminating actor B is safely unregistered from all the actors
that may interact with it in the future (generally a small subset of the ones that
know its PID). Often this unregistering procedure is best done directly from the
actor B itself. Then only B can safely terminate.

Two options exist for a proper termination procedure:

• either to simply postpone the deletion of B until the end of the current
tick (T), letting all diascas that are needed in-between elapse, so that the
aforementioned forgetting can take place

6Indeed actor B would then terminate immediately, either causing the time manager to
wait for it unsuccessfully (if the tick of B was not finished yet) or possibly making it be
removed from the simulation whereas another actor could still send an actor message to it,
thus being blocked forever, waiting for an acknowledgment that would never come. Moreover
the time manager intercepts actor deletions and checks that they were indeed expected.

22

• or to finely tune the waiting over diascas so that B is deleted as soon as
strictly needed (i.e. as soon as all potential actors aware of B know now
that B is terminating), before even the end of the current tick; in this
case the number of diascas to wait depends on the length of the chain of
actors knowing B (i.e. actor C may know B and may have transmitted
this knowledge to D, etc.)

The first option is by far the simplest and most common: B simply calls
class_Actor:declareTermination/1, and, starting from the same diasca, no-
tifies any actor of its deletion. The notification chain will unfold on as many
diascas as needed, and once all the diascas for the current tick will be over, a
new tick will be scheduled and B will then be deleted automatically.

The second option is more precise but more demanding, as it requires B to
be able to determine an upper-bound to the number of diascas that can elapse
before it can safely terminate (thus without waiting for the next tick to happen).

Such a feature is provided so that, during a tick, any number of actor cre-
ations, deletions and interactions may happen, "instantaneously", and according
to any complex pattern.

For example, B may know that only actor C knows it, in which case B will
notify C of its termination immediately, implying that starting from {T,D+2}
C is expected to never interact with B anymore (C will receive and process the
message at {T,D+1} but due to message reordering C might already have sent
a message to B at this timestamp - in the general case B should ignore it).

In this context B is to call class_Actor:declareTermination/2, with a
termination delay of 2 diascas. A larger delay would have to be specified if C
had to notify in turn D, and so on...

With both termination options, once class_Actor:declareTermination/{1,2}
is called, the engine will take care of the appropriate waiting and then of the
corresponding deletion, with no further intervention.

Note that:

• should a too short termination delay be chosen by mistake, the simulation
engine will do its best to detect it

• if setting up a proper termination happens to be too cumbersome on to
many cases, an automatic system might be designed, in order to keep track
of inter-model references (e.g. like a garbage collector operated on actors,
based on reference counting - either PID or AAI); however this mechanism
would probably have some major drawbacks by design (complex, expen-
sive because of reference indirections, etc.); moreover having an implicit,
dynamic, flexible communication graph is probably more a feature than a
limitation

23

Note
The proper termination of an actor results into a normal termination,
not in a crash. Therefore processes (including other actors) that would
be linked to a terminating actor will not be terminated in turn because
of it.
On the other hand, as soon as an actor crashes, the simulation is ex-
pected to fully crash in turn, in order to avoid silent errors; knowing
that anyway no automatic fall-back to a crash can be defined, since it
generally means there is a bug in the code of at least a model.

24

1.8.1.2.3 Summary of The Sim-Diasca Conventions to Enforce
1.8.1.2.3.1 Regarding State

In the code of an actor (i.e. inheriting from a class_Actor child instance),
the only attributes inherited from Sim-Diasca that should be directly accessed
from models is trace_categorization, to provide from the constructor various
ways of selecting trace messages afterwards.

All other attributes inherited from a class_Actor instance should be re-
garded as strictly private, i.e. as technical details of the engine that are not of
interest for the model developer (neither in terms of reading nor of writing).

Of course the developer is free of defining any class hierarchy, with each
specialising class defining all (non-colliding) attributes needed.
1.8.1.2.3.2 Regarding Behaviour

Action Correct Incorrect
Initial Actor Creation
(before the simulation
start)

class_Actor:create_initial_actor/2
(directly from the simulation
case)

Use of a variation of
spawn or of WOOPER
new

Runtime Actor Cre-
ation (in the course of
the simulation)

class_Actor:create_actor/3
(only from another actor)

Use of a variation of
spawn or of WOOPER
new

Actor Communication class_Actor:send_actor_message/3TargetActor !
AMessage

Actor Termination
Decision

Notify relevant actors and
postpone termination until
longest possible interaction is
necessarily over

Immediate non-
coordinated triggered
termination

Actor Termination
Execution

class_Actor:declareTermination/{1,2}TargetActor !
delete

25

1.8.2 Actor Scheduling

1.8.2.1 Basics

1.8.2.1.1 Simulation Time: Of Ticks and Diascas Simulation time is
fully decorrelated from wall-clock time, and is controlled by the time manager(s):
the fundamental frequency of the simulation (e.g. 50Hz) leads to a unit time-
step (a.k.a. simulation tick) to be defined (e.g. 20ms, in simulation time),
each time-step lasting, in wall-clock time, for any duration needed so that all
relevant actors can be evaluated for that tick.

If that wall-clock duration is smaller than the time-step (the simulation
is "faster than the clock"), then the simulation can be interactive (i.e. it
can be slowed down on purpose to stay on par with wall-clock time, allowing
for example for some human interaction), otherwise it will be in batch mode
(running as fast as possible).

A simulation tick is split into any number of logical moments, named diascas,
which are used to solve causality and are not associated to any specific duration
by themselves.

Both ticks and diascas are positive unbounded integers.
So a typical simulation timestamp is a tick/diasca pair, typically noted as

{T,D}.

1.8.2.1.2 Time Managers Controlling this simulation time means of-
fering a scheduling service, here in a distributed way: it relies on a tree of time
managers, each being in charge of a set of direct child managers and of local
actors.

This scheduling service drives them time-wise, so that they all share the
same notion of time (ticks and diascas alike), find a consensus on its flow, while
still being able to evaluate all corresponding actors in parallel, in spite of their
possible coupling.

In the most general terms, the behaviour of an actor is partly determined by
what it would do by itself (its "spontaneous behaviour"), partly by the signals
its environment sends to it, i.e. based on the messages that this actors receives
from other actors (its "triggered behaviour").

In both cases, for an actor, developing its behaviour boils down to updating
its state and/or sending messages to other actors, and possibly planning future
spontaneous actions and/or sending information to probe(s).

1.8.2.1.3 At Actor Creation Each actor, when created, has first its
onFirstDiasca/2 actor oneway triggered7. This is the opportunity for this
newly created actor to develop any immediate first behaviour, and also to specify
at once when it is to be scheduled next for a spontaneous behaviour: otherwise,
as all actor are created with an empty agenda, they would remain fully passive
(never being spontaneously scheduled), at least until a first actor message (if
any) is sent to them.

So all models are expected to define their onFirstDiasca/2 actor oneway8,
in which most of them will at least program their next spontaneous schedulings

7This actor actually receives the corresponding actor message sent by the load balancer,
which determined a placement for it and created it.

26

(see, in class_Actor, notably addSpontaneousTick/2 and addSpontaneousTicks/2).
This corresponds, internally, to exchanges with the time managers in charge of
the corresponding actors.

Creations happen at the diasca level rather than at the tick level, so that
any sequence of model-related operations (creation, deletion, action and inter-
actions) can happen immediately (in virtual time), to avoid any time bias.

1.8.2.1.4 Afterwards Then a very basic procedure will rule the life of
each actor:

1. when a new simulation tick T is scheduled, this tick starts at diasca D=0

2. as the tick was to be scheduled, there was at least one actor which had
planned to develop a spontaneous behaviour at this tick; all such actors
have their actSpontaneous/1 oneway executed

3. as soon as at least one actor sent an actor message, the next diasca, D+1,
is scheduled9

4. all actors targeted by such a message (sent at D) process their messages
at D+1; possibly they may send in turn other messages

5. increasing diascas will be created, as long as new actor messages are ex-
changed

6. once no more actor message is sent, the tick T is over, and the next is
scheduled (possibly T+1, or any later tick, depending on the spontaneous
ticks planned previously)

7. simulation ends either when no spontaneous tick is planned anymore or
when a termination criteria is met (often, a timestamp in virtual time
having been reached)

Internally, these scheduling procedures are driven by message exchanges by
actors and time managers:

• when a tick begins (diasca zero), each time manager sends a corresponding
message to each of its actors which are to be scheduled for their sponta-
neous behaviour

• when a (non-zero) diasca begins, actors that received on the previous
diasca at least one actor message are triggered by their time manager, so
that each actor can first reorder appropriately its pending messages on
compliance with the expected simulation properties (notably: causality,
reproducibility, ergodicity), and then process them in turn

8Knowing that the default implementation for onFirstDiasca/2, inherited from
class_Actor, simply halts the simulation on error, purposely.

9Actually there are other reasons for a diasca to be created, like the termination of an
actor, but they are transparent for the model developer.

27

1.8.2.2 Actor Scheduling The basic granularity in virtual time is the tick,
further split on as many diascas as needed (logical moments).

The engine is able to automatically:

• jump over as many ticks as needed: ticks determined to be idle, i.e. in
which no actor message is to be processed, are safely skipped

• trigger only the appropriate actors once a diasca is scheduled, i.e. ei-
ther the ones which planned a spontaneous behaviour or the ones having
received an actor message during the last diasca or being terminating

• create as many diascas during a tick as strictly needed, i.e. exactly as long
as actor messages are exchanged or actors are still terminating

Indeed the simulation engine keeps track both of the sendings of actor
messages10 and of the planned future actions for each actor. It can thus de-
termine, once a diasca is over, if all next diascas or even a number of ticks can
be safely skipped, and then simply schedule the first next timestamp to come.

So, for any simulation tick, each actor may or may not be scheduled, and an
actor will be scheduled iff:

• it planned a spontaneous behaviour for this diasca

• or it received at least one actor message during the last diasca

• or it is terminating

The actor happens to be itself able to keep track of its expected schedulings,
and thus it can automatically check that they indeed match exactly the ones
driven by the time manager, for an increased safety.

Anyway these mechanisms are transparent to the model developer, who just
has to know that all actor messages, once appropriately reordered, will be trig-
gered on their target, and that the planned spontaneous schedulings will be
enforced by the engine, according to the requests of each actor.

Thus the developer just has to define the various actor oneways that the
model should support (i.e. the ones that other actors could trigger thanks
to an actor message), and the spontaneous behaviour of that model (i.e. its
actSpontaneous/1 oneway). Then the simulation engine takes care of the rest.

1.8.2.3 Planning Future Spontaneous Behaviour Each actor is able
to specify, while being scheduled for any reason (an actor message having been
received, and/or a spontaneous action taking place), at least one additional tick
at which it should be spontaneously scheduled later. An actor can be scheduled
for a spontaneous action up to once per tick.

To do so, it can rely on a very simple API, defined in class_Actor:

10This is done on a fully distributed way (i.e. through the scheduling tree of time managers
over computing nodes) and all communications between an actor and its time manager are
purely local (i.e. they are by design on the same Erlang node).
Moreover the messages themselves only go from the emitting actor to the recipient one: in

each diasca, only the fact that the target actor received a first message is of interest, and this is
reported only to its own, local time manager - the actual message is never sent to third parties
(like a time manager), and no more notifications are sent by the receiving actor once the first
message has been reported. So the number of messages, their payload and communication
distance are reduced to a bare minimum.

28

• scheduleNextSpontaneousTick/1: requests the next tick to be added to
the future spontaneous ticks of this actor

• addSpontaneousTick/2: adds the specified spontaneous tick offset to the
already registered ones

• addSpontaneousTicks/2: same as before, this time for a list of tick offsets

• withdrawSpontaneousTick/2: withdraws the specified spontaneous tick
offset from the already registered ones

• withdrawSpontaneousTicks/2: same as before, this time for a list of tick
offsets

An actor may also decide instead to terminate, using declareTermination/{1,2}
for that, once having withdrawn any spontaneous ticks that it had already
planned11.

1.8.3 Data Management

In a distributed context, on each computing host, the current working directory
of the simulation is set automatically to a temporary root directory, which will
be appropriately cleaned-up and re-created.

This root directory is in /tmp, to store all live data, deployed for the simu-
lation or produced by it.

Its name starts with sim-diasca (to prevent clashes with other applica-
tions), then continues with the name of the simulation case (so that multiple
cases can run in the same context), then finishes with the user name (so that
multiple users can run the same cases on the same hosts with no interference).

Thus the root directory of a simulation on any host is named like:

/tmp/sim-diasca-<name of the simulation case>-<user name>

For example:

/tmp/sim-diasca-Sim-Diasca_Soda_Integration_Test-boudevil

This root directory has two sub-directories:

• deployed-elements, which corresponds to the content of the simulation
package (i.e. both code and data, both for the engine and for the third-
party elements, if any)

• outputs, which is to contain all live data produced by the simulation (e.g.
data file, probe reports, etc.); all computing nodes will have directly this
directory as working (current) directory

A simulator which added third-party data to the simulation archive (thanks
to the additional_elements_to_deploy field of the deployment settings speci-
fied in the simulation case) is able to access to them thanks to class_Actor:get_deployed_root_directory/1.

For example, if the following was specified:

11The time management service could be able to determine by itself which ticks shall be
withdrawn whenever an actor departs, however this operation would not be scalable at all (it
would become prohibitively expensive as soon as there are many actors and/or many ticks
planned for future actions).

29

DeploymentSettings = #deployment_settings{
...
additional_elements_to_deploy = [

{"mock-simulators/soda-test",code},
{"mock-simulators/soda-test/src/soda_test.dat",data}

...
},
...

Then all models are able to access to the data file thanks to:

DataPath = file_utils:join(class_Actor:get_deployed_root_directory(State),
"mock-simulators/soda-test/src/soda_test.dat"),

% Then open, read, parse, etc. at will.

On simulation success, all results will be appropriately generated (in a rather
optimal, parallel, distributed way), then aggregated and sent over the network
to the centralised result directory, created in the directory from which the sim-
ulation was launched, on the user host.

Finally, on simulation shutdown, the deployment base directory will be fully
removed.

30

2 Sim-Diasca Implementation Spotlights

In this section, various technical pieces of information (not of interest for users,
but relevant for engine maintainers) will be discussed regarding the mode of
operation of Sim-Diasca.

2.1 About Erlang Nodes and Simulation Identifiers

2.1.1 How Many Erlang Nodes Are Involved in a Simulation?

By default (unless the case specifies otherwise), only the local host is involved,
yet there are two VMs (Erlang virtual machines) running then: the one of the
user node, and the one of a (local) computing node.

In the general case, distributed simulations running on N hosts will involve
by default N+1 nodes: one user node (on the user host) and N computing nodes
(including one on the user host).

See the computing_hosts field in the deployment_settings record (defined
in class_DeploymentManager.hrl) for further options.

2.1.2 How Are Launched the Erlang nodes?

By default, long names are used for all Sim-Diasca related nodes.
To avoid any possible cross-talk, we have to ensure that a simulation (live or

post-mortem) remains fully self-contained and immune to interferences (notably
from other simulations that would be run in parallel or afterwards, i.e. both at
runtime and regarding the on-disk generated information).

Erlang ensures (thanks to EPMD) that, on any given host, regardless of the
Erlang installations, of their version, of the UNIX users involved, no two nodes
can bear the same (long) name (otherwise the second node will fail to launch).

The Sim-Diasca user node is launched from the generic makefile infrastruc-
ture, resulting in the myriad/src/scripts/launch-erl.sh helper script to be
run with proper parameters.

The name of such a user node (made a distributed node programmatically,
see Node Naming) will follow the following format: Sim-Diasca-<name of the
test or case>-<user name>-<simulation instance identifier>-user-node.

For example, a case named soda_deterministic_case.erl run by a user
john and relying on a Simulation Instance Identifier equal to 43416933 will re-
sult in a user node named Sim-Diasca-soda_deterministic_case-john-43416933-user-node.

As for the (per-host) computing nodes, they will be launched each from
their respective class_ComputingHostManager instance (driven by the class_DeploymentManager
singleton created at start-up), and their name will follow that format:

Sim-Diasca-<name of the test or case>-<user name>-<simulation instance
identifier>-computing-node-on-<hostname>

The same example, running on host volt, will thus result in a computing
node to be created under the name:

Sim-Diasca-soda_deterministic_case-john-43416933-computing-node-on-volt

31

http://erlang.org/doc/reference_manual/distributed.html

2.1.3 What is the Simulation Instance Identifier?

This information, whose shorthand is SII, is a string made of alphanumeri-
cal characters, dashes (-) and underscores (_), and is meant to guarantee the
uniqueness of a given instance of a simulation (i.e. no two simulations, run
simultaneously or not, should ever bear the same SII).

By default the SII is automatically generated and managed by Sim-Diasca.
It is based on a UUID (Universally unique identifier) determined at start-up12.
An example of a UUID is 4f8fbacd-93d2-487d-86ff-23f75339c191.

As the acronym suggests, there is very little chance that two simulation
instances may succeed in drawing the same UUID, so they provide an adequate
guarantee of uniqueness.

These UUIDs may be deemed a bit too long to be very tractable for humans,
so the engine shortens them thanks to hashing (thanks to erlang:phash2/1),
hopefully preserving a sufficient part of their underlying unicity.

The hash value of our example UUID corresponds to the 43416933 identifier
in the previous section.

While such an automatic identification is convenient and transparent, for
some uses it is possible and even desirable not to rely on such a randomly
determined identifier, but to use instead one that is transmitted by a third party
(typically if the engine is embedded in a simulation platform able to provide its
own identifiers).

Then Sim-Diasca is able to use such an externally-obtained identifier thanks
to its --simulation-instance-id command line option.

As a result, such a platform may run a simulation case with:

$ make my_foobar_case
CMD_LINE_OPT="--batch --simulation-instance-id 117"

Then the specified SII will be used instead of the one that would be deter-
mined internally, at runtime, notably to designate:

• the user and computing nodes (e.g. Sim-Diasca-Foobar_Case-john-117-user-node@volt)

• the simulation result tree (e.g. Foobar_Case-on-2016-6-14-at-17h-07m-28s-by-john-117)

• the temporary directories (e.g. /tmp/sim-diasca-Foobar_Case-2016-6-14-at-15h-12m-18s-117)

• the simulation trace file (e.g. Foobar_Case-john-117.traces)

2.1.4 How Erlang nodes are named?

So the SII is either user-supplied or determined at runtime, by the engine itself.
As a result, the name of the user node cannot be determined statically in the
general case (the node must run so that it may draw its UUID then determine
its SII).

Knowing that additionally a node created as a distributed one (here with the
"long names" command-line option) cannot be renamed (net_kernel:stop/0
not allowed), the only relevant design is, from the Sim-Diasca layer onward

12A UUID is obtained thanks to any system-provided uuidgen command, other-
wise our own implementation is used for that (refer, in the Myriad layer, to
basic_utils:generate_uuid/0).

32

https://en.wikipedia.org/wiki/Universally_unique_identifier

(lower ones relying on long names) to start the user-node in non-distributed
mode (thanks to the --nn option of launch-erl.sh), establish the name it
shall bear, and then only execute net_kernel:start/1.

2.1.5 How Is It Ensured that No Two Simulations Can Interfere?

The naming of nodes is a first-level security, which should prevent most acci-
dental collisions.

If ever all other safety measures failed for any reason, a node naming clash
will happen, yet it will be detected and will lead to making the clashing simu-
lations fail, so no silent failure shall be feared.

This protection is obtained thanks to Erlang cookies using transparently the
UUID mentioned in the previous section (UUIDs will be used in all cases for
cookies, even if a third-party SII is specified - for an increased safety, should
clashing SIIs be provided by mistake).

33

3 Sim-Diasca Technical Gotchas

We mention here the main technical sources of puzzlement that may affect the
unwary developer.

3.1 The Code Was Updated, Yet Seems To Linger

This may happen if the code source has been changed yet has not been
recompiled before launching a simulation: Sim-Diasca, once executed, will
attempt to compile it, and hopefully succeed.

Then the corresponding BEAM modules will be available in their newer
version and, when they will be referenced for the first time, they will be loaded
- thus in their newer form.

However, some modules may have already been loaded by the engine (for its
internal mode of operation), before it triggered the compilation update.

As a result, even if a newer version of their BEAM file becomes available
on disk, these modules have already been loaded (and will not be specifically
reloaded)13 ; they will thus stick to their former version, and their newer version
will be loaded only at the next Sim-Diasca run.

A solution is simply to ensure that any module whose source has been modi-
fied is recompiled afterwards (simply a matter of typing CTRL-P with our emacs
settings), at least before a new simulation is run.

13Moreover, they may belong to the pioneer modules, in which case they will be deployed
over the network on other nodes as well, instead of being read in an updated version from the
simulation archive.

34

4 Developer Hints

4.1 Choosing The Right Datastructures

Writing models involves a lot of algorithmic design decisions, and many of them
deal with data-structures.

There is a large choice of both data-structures as such (lists, trees, associative
tables, heap, etc.) and of implementations (gb_tree, hashtables, etc.), offering
various trade-offs.

In some occasions, we felt the need to develop our own versions of some
of them (see myriad/src/data-management for the most common ones), even
if in some cases built-in solutions could provide better trade-offs (thinking to
ETS tables- albeit offering a different sharing semantics - and to the process
dictionary - which is not the purest and most flexible feature we wanted to rely
on).

We nevertheless use most of the time the built-in data-structures, like gb_sets
or queues. When multiple implementations providing the same API are avail-
able (e.g. for ordered lists), we usually define a (sometimes module-specific)
list_impl symbol, allowing to switch easily between similar datastructures.

For example:

% Defines list_impl:
-include("data_types.hrl").

f(A) ->
true = ?list_impl:is_empty(A), [...]

35

Similarly, for algorithms operating on these data-structures we tend not to
reinvent the wheel (e.g. class_Mesh uses the digraph module), unless we need
specific versions of them (e.g. operating on an implicit graph, with user-specified
anonymous functions, see myriad/src/utils/graph_utils.erl).

36

4.2 Running Bullet-Proof Experiments

Making use of large-scale HPC infrastructures is not straightforward: they often
behave like black boxes, and because of the number and specificities of the hard-
ware and software elements that are involved, they tend to exhibit unanticipated
behaviours.

Here is a list of recommended steps to go through, in order to have a better
chance of making good use of these resources:

1. deactivate the sending of simulation traces, that would otherwise over-
whelm the trace aggregator: comment-out, in traces/src/class_TraceEmitter.hrl:
%-define(TracingActivated,)

2. activate any console outputs you are interested in (uncomment relevant
io:format calls):

• in sim-diasca/src/core/src/scheduling/class_LoadBalancer.erl,
in the create_actor/4 function, if wanting to follow actor creation

• in sim-diasca/src/core/src/scheduling/class_DeploymentManager.erl,
in the launch_node/4 function, if wanting to measure how long it
took to accept or reject each candidate host (it may last for more
than one full minute in some cases)

37

3. increase the time-outs:

• in wooper/src/wooper.hrl, one may uncomment the extended synchronous_time_out
constant recommended for simulation

• in extreme conditions, in sim-diasca/src/core/src/scheduling/class_TimeManager.erl,
in the watchdog_main_loop/3 function, MaxMinutes could be in-
creased

• still in extreme conditions, in sim-diasca/src/core/src/scheduling/class_DeploymentManager.erl,
in the launch_node/4 function, at the level of the net_utils:check_node_availability
call, AttemptCount could be increased (trade deployment speed for
reliability)

4. copy the source of the simulator and update the configuration files accord-
ing to the case to be run

5. compile everything from the root, from scratch (make clean all)

6. for all the classes for which traces are wanted (if any), re-enable their
sending:

• re-activate traces, reverting the content of traces/src/class_TraceEmitter.hrl

• update the time-stamps of all target classes, e.g.:
touch sim-diasca/src/core/src/scheduling/class_DeploymentManager.erl

7. re-compile from the root (make all) if traces were enabled for at least one
class

8. possibly: hide ~/.ssh/known_hosts to avoid nodes being rejected because
of a change in the RSA fingerprint of their key

9. launch in debug mode from the front-end, e.g.

sim-diasca/conf/clusters/sim-diasca-launcher.sh --debug
--node-count 32 --cores-per-node 8 --queue parall_256
--max-duration 64 foobar-simulator/src/uc23_integration_test.erl

38

4.3 Using Type Specifications With Sim-Diasca

4.3.1 Type Specifications: What For?

Adding a type specification (shorthand: spec) to the source code of a function
means specifying what are its intended input and output parameters, in terms
of number and types. This can be applied to records as well.

Once all Sim-Diasca code (including prerequisites, like Myriad, WOOPER and
Traces) and the one of user applications based on it (e.g. Mock-Simulators
or any actual simulator) have been instrumented with type specifications (i.e.
when all exported functions and records of all modules have a proper spec),
then:

• static checkings can be done: Dialyzer is able to detect various discrep-
ancies (such as type errors, unreachable code, unnecessary tests, etc.) at
compile-time (therefore a lot earlier than at runtime, and allowing to ex-
amine a priori all code paths)

• more precise and useful documentation can be generated, thanks to edoc

Some versions of Sim-Diasca are referenced in Dialyzer’s application reposi-
tory.

4.3.2 Type Specifications: How?

4.3.2.1 Prerequisites

4.3.2.1.1 Taking Care of Erlang/OTP First of all, type information
must have been already extracted from the Erlang/OTP files of the install that
will be used, and stored in a PLT (for Persistent Lookup Table) file for later-
reuse (this is a preprocessing stage). Such a file is preferably created one time
for all for each Erlang environment being used. Therefore a PLT file is better
produced as the last step of an Erlang installation (see the --generate-plt
option of our install-erlang.sh script, which streamlines it). This operation
is rather long (e.g. one hour and a half).

We prefer to have Dialyzer operate on BEAM files (*.beam) rather than
on source files (*.hrl/*.erl), as include paths, symbol definitions and parse
transforms are better supported this way.

These BEAM files must have been compiled with debug information (i.e.
with the +debug_info compiler option). This is thus the default enforced for
the full Sim-Diasca software stack.

When writing type specifications, one must know what are the built-in ones,
in order to re-use them, so that they do not end up being defined more than once,
under different names. To do so, one may use our myriad/src/scripts/list-available-types.sh
script, like in:

$ cd otp_src_RxBy
$ list-available-types.sh | tee declared-types-in-Erlang-RxBy.txt

39

http://www.it.uu.se/research/group/hipe/dialyzer
http://erlang.org/doc/apps/edoc/users_guide.html
http://dialyzer.softlab.ntua.gr/apps/#Sim-Diasca-2-0-10
http://dialyzer.softlab.ntua.gr/apps/#Sim-Diasca-2-0-10

4.3.2.1.2 Taking Care of Above Layers Once a PLT is available
for Erlang/OTP, PLTs are to be generated for the entire codebase of interest
(typically Sim-Diasca and its prerequisites, and possibly user code as well).

This can be achieved with the generate-all-plt make target, to be run
from the root of either a check-out or an install. The script will climb our soft-
ware stack layer by layer, and generate for each a custom PLT (e.g. myriad.plt).

If, for any reason, the PLT of a layer must be (re)generated, simply use the
generate-local-plt make target from the root of this layer.

The generation of a PLT will notably allow to catch discrepancies of calls
with regard to the specs of the functions being called.

Checking specs against the functions they apply to is useful as well. This
can be done on any layer through the self-check-against-plt make target.

Like for Erlang, for each layer a repository of the type declarations defined
there can be built, either by running make generate-list-of-local-types
from the root of that layer (producing then a declared-types-in-<LAYER>.txt
file), or by running make generate-list-of-all-types from the Sim-Diasca
root to have all lists of types generated at once.

4.3.2.2 Expressing Type Specifications The complete syntax is described
here. This will be the main reference to be used and kept ready when writing
type specs.

Following conventions are to respect:

• type specifications must be defined in all source files

• all exported functions and records defined in headers should have a type
spec, and this spec should be specified on the line just before their own
definition; local functions and records may or may not have type specs

• these type specs are to be defined as soon as a new function or record is
introduced

• as soon as a data-structure is being used more than once (e.g. let’s sup-
pose a timestamp is being defined as a triplet of positive integers), a user-
specific type must be defined (e.g. -type MyTimeStamp() :: {pos_integer(),pos_integer(),pos_integer()}.)
and re-used everywhere applicable (e.g. -spec get_timestamp() -> MyTimeStamp().)

• all type definitions (opaque or not) must be declared in a relevant module
(least astonishment principle), and must be gathered in a section near the
top of the file

• types that may be potentially reused elsewhere must be exported; con-
versely, relevant types that have been already defined must be reused
(instead of being defined multiple times); to know what are the currently
known types, use our list-available-types.sh script

• type specs should include no extraneous whitespaces and should respect
the usual 80 character wide lines (thus possibly being broken into multiple
lines)

• external data (e.g. information input by the user) shall be validated,
and the checking code must denote these input information as of type

40

http://erlang.org/doc/reference_manual/typespec.html#id74368

basic_utils:external_data(), basic_utils:unchecked_data() or, if
appropriate, as a more precise basic_utils:user_data(); these types are
all (opaque) aliases for term(); data shall be tagged with their expected
type only once they have been validated (as one should certainly not trust
the user or more generally any program interface)

• Dialyzer should be run regularly against the codebase to check frequently
whether the sources are correct

For a larger codebase to instrument with type specs, it may be useful to start
first with the specs that can be deduced by Dialyzer from the actual code of
functions. This can be done thanks to our add-deduced-type-specs.escript
script (in myriad/src/scripts). One should note that these specs are not, in
the general case, the ones that the developer would have written (as Dialyzer
cannot guess the intent of the original developer), so at least some adaptation
work remains (e.g. to define reusable types).

Note
A developer may overspec or underspec.
Overspecification corresponds to the writing of type specifications that
are narrower than the allowed types that a function could process. For
example, even if a given function happened to be able to use improper
lists as well, the developer may decide that only proper lists are to be
passed. Similarly, one may prefer string() to [[any()] | char()].
Reciprocally, underspecification corresponds to the writing of type spec-
ifications that are larger than the allowed types that a function could
process. This may happen if planning to expand later the inputs that a
function can take into account.
Overspecification is perfectly legitimate, whereas underspecification
should preferably be avoided.

4.3.2.3 Checking Type Specifications In the context of each layer, one
may routinely run:

$ make clean all generate-local-plt

This allows to list all the types that are unknown (generally misspelled
or not exported) and spot a few kinds of errors (e.g. Call to missing or
unexported function).

For a layer foo (e.g. Myriad, WOOPER, etc.), one should run from its root
directory:

$ make self-check-against-plt

You will have an output like:

$ make self-check-against-plt
Building all, in parallel over 8 core(s), from BASE/foo
[..]
Checking foo against its PLT (./foo.plt)

Checking whether the PLT ./foo.plt is up-to-date... yes

41

Compiling some key modules to native code... done in 0m29.49s
Proceeding with analysis...
bar.erl:53: Function run/0 has no local return
[..]

Issues can then be tackled one by one. To speed up the process of improving
a module bar, one can run:

$ make bar.plt
Checking module ’bar.beam’ against relevant PLT
[...]

And only this module will be checked, allowing to fix them one by one.

Note
When a source file is modified, the rebuild the BEAM must be triggered
specifically, otherwise Dialyzer will not detect that its PLT is not up-
to-date anymore (it relies on the timestamp of the BEAM file, not on
the one of the *.erl file).

4.3.3 References

• Dialyzer homepage

• a useful Dialyzer practical guide

• Types (or lack thereof)

• Types and Function Specifications

• edoc User’s Guide

42

http://www.it.uu.se/research/group/hipe/dialyzer
http://www.ejabberd.im/dialyzer
http://learnyousomeerlang.com/types-or-lack-thereof
http://erlang.org/doc/reference_manual/typespec.html
http://erlang.org/doc/apps/edoc/users_guide.html

5 Credits

Special thanks to Randall Munroe who is the author of all the comic strips
that enliven this documentation, and who kindly allowed their use in this ma-
terial.

See his XKCD website for all information, including for all his delightful
other strips.

6 What To Do Next?

Congratulations, you reached the end of this developer guide!

Now you should write your own test models, getting inspiration from the
Sim-Diasca Mock Simulators (see the top-level mock-simulators directory in
the source archive).

Writing such toy models is surely the shortest path to the understanding of
Sim-Diasca conventions, no matter how fruitless an activity it may seem:

We hope that you will enjoy using Sim-Diasca. As always, any (constructive!)
feedback is welcome (use the email address at top of this document for that).
Thanks!

43

http://xkcd.com/

	Table of Contents
	1 Sim-Diasca Code Conventions
	1.1 Foreword
	1.2 Text Conventions
	1.3 General View of the Software Stack
	1.4 Erlang Conventions
	1.5 Myriad Conventions
	1.6 WOOPER Conventions
	1.7 Traces Conventions
	1.8 Sim-Diasca Conventions
	1.8.1 Thou Shalt Not Bypass The Simulation Engine
	1.8.1.1 Proper Inter-Actor Communication
	1.8.1.2 Proper Actor Life-Cycle

	1.8.2 Actor Scheduling
	1.8.2.1 Basics
	1.8.2.2 Actor Scheduling
	1.8.2.3 Planning Future Spontaneous Behaviour

	1.8.3 Data Management

	2 Sim-Diasca Implementation Spotlights
	2.1 About Erlang Nodes and Simulation Identifiers
	2.1.1 How Many Erlang Nodes Are Involved in a Simulation?
	2.1.2 How Are Launched the Erlang nodes?
	2.1.3 What is the Simulation Instance Identifier?
	2.1.4 How Erlang nodes are named?
	2.1.5 How Is It Ensured that No Two Simulations Can Interfere?

	3 Sim-Diasca Technical Gotchas
	3.1 The Code Was Updated, Yet Seems To Linger

	4 Developer Hints
	4.1 Choosing The Right Datastructures
	4.2 Running Bullet-Proof Experiments
	4.3 Using Type Specifications With Sim-Diasca
	4.3.1 Type Specifications: What For?
	4.3.2 Type Specifications: How?
	4.3.2.1 Prerequisites
	4.3.2.2 Expressing Type Specifications
	4.3.2.3 Checking Type Specifications

	4.3.3 References

	5 Credits
	6 What To Do Next?

