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ABSTRACT
This article presents the efforts made to develop a simulator

for local energy exchanges by means of an energy marketplace
designed as a multi-agent model.

The objective of this article is not to focus on EDF’s industrial
use case by itself, but to share elements of experience regarding
our use of functional programming in order to create this specific
simulator and the generic layers on which it is built.

CCS CONCEPTS
•Applied computing→ Engineering; •Computingmethodolo-
gies → Parallel programming languages;Modeling method-
ologies; Distributed simulation; Discrete-event simulation;
Agent / discretemodels;Concurrent programming languages.
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1 INTRODUCTION
Some context is of use to better understand the constraints that

apply whenever considering the use of Functional Programming
(from now shortened as FP) from an industrial point of view like
the one in which ACME1 was developed.

EDF[5], the supporter of this study, is a large-scale multinational
energy utility operating on the three main associated industrial

1ACME stands for Autoconsommation Collective et Mobilité Electrique, French for
Collective Self-Consumption and Electric Mobility.
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perimeters of electricity: production (with notably 56 nuclear reac-
tors in France, but also hydropower, marine energies, wind power,
solar energy, biomass, geothermal energy and fossil-fired energy),
transport (to convey larger quantities of electricity across a country)
and distribution (so that all customers, including residential ones,
can be connected to the resulting electrical grid).

EDF maintains a strong effort of in-house R&D, operating in var-
ied scientific fields, ranging from power electronics and industrial
control, economics of energy, neutronics to urban planning, numer-
ical analysis, structural mechanics and industrial risk assessment.

The many operational requirements of a larger utility incur sig-
nificant needs in terms of software development. Such a sustained
activity led to best tackle the corresponding software challenges by
creating transverse R&D divisions whose role is to bridge the gap
between mainstream industrial software engineering and applied
research, covering a wide range of topics often close to computer
science: from HPC (High Performance Computing) to the architec-
ture of larger information systems, from artificial intelligence to
distributed systems, from applied mathematics to virtual reality,
cybersecurity, etc.

The corresponding tools developed for the industry’s projects
fall into various categories, from one-shot proofs of feasibility to
generic, feature-rich platforms, some of them being released to the
public as open source software [31].

Even though the vast majority of EDF R&D’s larger software
projects have been relying on programming languages that are
mostly imperative (often Fortran, then C, C++, Python), some level
of interest in functional programming still arose. This could be seen
for example through some sessions of internal training addressed
to developers of HPC solvers, in the belief that some exposure to
FP could improve even one’s use of imperative languages regarding
clarity, correctness (ex: with a more direct link to formal proof) if
not efficiency (ex: to support larger linear operations).

This ongoing interest in FP could also be seen through the in-
volvement in European projects like RELEASE[28] or in the organi-
zation in 2012 of a CEA-EDF-INRIA summer school on Functional
Programming for Parallel and Concurrent Applications[15].

Another concrete element regarding EDF’s use of FP lies in the
ACME simulator discussed in this article, whose purpose, industrial
context and requirements will be presented in the next section.

ACME, as a direct application of the Sim-Diasca simulation en-
gine, is by design fully implemented as a functional program, and
this specificity will be discussed in-depth through section 5.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 A LOCAL ENERGY MARKET SIMULATOR
Electrical systems are currently facing vast emerging challenges

that are revolutionizing their development into smarter power grids.
These challenges mainly originate from the increase in decentral-
ized energy production (renewable energy sources (RES), storage
batteries) and the rise in popularity of electric vehicles (EV) - both
of which stemming from the need of better addressing the ongoing
climate change.

The abundance of an increasingly decentralized production of
electricity made the traditional centralized design of the power
system obsolete, and transformed a mostly static, hierarchical grid
into an active network that allows for bidirectional flows of energy
and information between customers and electricity suppliers. This
change leads to the emergence of ’prosumer’-type behaviors, where
energy actors become both producers and consumers, that actively
participate in the electricity supply system and its balance.

In order to adapt to such changes, incentive mechanisms can be
devised at a local level, so that a mixed community of consumers
and prosumers can better synchronize their electricity consumption
with local production. ’Prosumers’ can profit from selling their pro-
duction surplus or energy stored in their batteries at a price higher
than offered by the regulated mandatory feed-in tariffs. Similarly,
consumers offer to shift their consumption (mainly controllable
uses such as washing machine, water heater, electric vehicle charg-
ing, etc.) to benefit from locally-produced renewable electricity at
profitable prices.

Such mechanisms can be provided by means of a Local Energy
Market (LEM) [32],[27],[26],[23]. A LEM allows prosumers and
pure consumers, connected to the same area of the distribution
network, to virtually trade electricity by means of interacting with
an energy marketplace platform.

The promise of these newer organizations in favor of electrical
self-consumption are numerous: support of RES/EV integration,
better local energy management, decrease in the need for expensive
grid expansion and in average energy costs.

Previous works on LEM can be classified according to three main
intents: studying their potential and benefits depending on different
market designs, assessing their utilization for local energy manage-
ment, and using blockchain technology with smart contracts for
their real-life implementation.

Marketplace trading is typically addressed by participating in
a multi-unit double auction system that matches supplies and de-
mands on a day-ahead or intra-day basis. In [16], a novel market
design respecting grid constraints was proposed. In [23], a market
allowing P2P trading with battery flexibility was tested. Two de-
signs with batteries located at a centralized level and user level were
considered. In [27], a comparison is conducted between different
market designs with both zero-intelligent and intelligent strategies
based on an agent-based simulation.

Regarding local energy management, in [24],[22], an intelligent
management system based on a market mechanism is proposed.
These results validated the benefits of such new management in
reducing peak loads while increasing one’s autonomy from the
grid.

A first proof of concept for a blockchain-based energy market
was developed in [25], and in [26] the eligibility of blockchain tech-
nology for operating decentralized energy markets was established.
However, the socio-economic impacts of these markets and the
technological evaluation and limitations of blockchain technology
for real-life operation (in terms of scalability, robustness, trans-
actions costs) was not investigated. In [32], which inspired some
aspects of ACME, a blockchain-based platform and business models
for LEM were designed and demonstrated. The technical and regu-
latory aspects of the simulator were assessed, and a smart contract
library for energy applications was developed.

With regard to previous works, we noticed that battery storage
technologies and EVs are often neglected when studying LEM, and
that the agent-based models are rarely transformed into reusable
simulators allowing for the exploration of model parameters. Also,
most agent-based models of LEM utilize simulation engines of
limited scalability, so the number of market participants in the
simulations is often restricted due to computational limitations.
Finally, a global simulator assessing both the properties of the
electrical system and of the information system for local energy
trades is rarely targeted. As a consequence, the ACME project aimed
at developing a multi-usage simulator for local energy exchanges
through a LEM that considers the additional dimensions of battery
flexibility, consumption of electrical vehicles, and of the information
system governing the associated exchanges.

The goal of our study is to evaluate the techno-economic inter-
ests of local energy exchanges, and to help understand the various
factors that may impact these exchanges and the operation of the
market, like: the number of participants, the proportion of pro-
sumers/consumers, the capacities of the solar batteries, and the
type of information system (centralized server versus blockchain-
based infrastructure) that organizes such exchanges.

These factors correspond to as many inputs of the ACME simu-
lator, which in turn evaluates the following metrics: the percentage
of energy that ends up being self-consumed in the community, the
average local electricity prices, the average electricity bill of a par-
ticipant, the profile of consumption peaks, and the proportion of
unfulfilled bids and asks addressed to the marketplace.

Figure 1: Inputs and Outputs of the ACME Simulator

3 A STUDY IN TERMS OF COMPLEX SYSTEMS
3.1 Introducing the Field of Complex Systems

Complex systems are systems composed of often numerous com-
ponents that are at least partly autonomous yet are bound to in-
teract, each according to its own purpose, patterns, features, state
properties and constraints.
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Quite often, these systems tend to not be deterministic, with at
least some of their components exhibiting partly stochastic behav-
iors.

For such systems, the whole is more than the sum of its parts, in
the sense that the collective behavior at a global level can hardly
be inferred directly from the component level, and that in the gen-
eral case no macroscopic description of it can be done in terms of
equations; more generally most of these systems are believed to be
irreducible to any aggregated modelling. Their emergent system
behavior is intrinsically dependent on the actual interactions be-
tween their parts or between these systems and their environment,
often with interdependent bonds and feedback loops.

Since the 1970s, many examples of complex systems have been
found in biology, transportation, social networks, urban planning.

Generally a wide range of approaches can be applied to study
systems of all kinds, the least demanding ones being expert as-
sessments, quick computations based on orders of magnitude, or
more detailed spreadsheet-based evaluations. However, at least
for some metrics - notably regarding performances and scalability
- such lightweight measures can hardly be applied to most com-
plex systems, as these measures fail to account for their temporal
characteristics (ex: for electricity like for communication networks,
average energy flows or bandwidth do not tell much about the peak
requirements, whereas in many cases the real driver of the design
of these system is actually these extreme values).

Finally, in the general case, neither comparisons against vali-
dated, reference tools can be done (they seldom exist) nor reduced-
size actual experiments are applicable (short of leading to results
that could be extrapolated further).

As a result, most complex systems can only be addressed thanks
to (computer-based) simulations - hence the purpose of the ACME
simulator. However such a reasoning is relevant only if the system
of interest for ACME is a complex one indeed - which the next
section will attempt to establish.

3.2 Decentralized Electrical Systems as
Complex Systems

Larger organisations of all sorts are likely to exhibit traits pertain-
ing to complex systems whenever they involve rather autonomous
peers interacting according to rich patterns in dynamic, heteroge-
neous environments.

This becomes quickly the case for many distributed applications
whose potentially unreliable nodes have to collaborate in spite of
non-ideal, latency-ridden networks; for them no global state or
clock are available, leading to hard impossibilities like the ones
established by the CAP theorem[1].

An electricity utility has to deal with such distributed systems.
This includes smart power grids, federating large populations of me-
ters (ex: 35 millions in France) and concentrators (700,000 of them)
interacting through PLC communication in order to implement
distribution-related services in spite of various classes of failures
and technical issues in terms of repeating and crossover; smart
grids are certainly among the largest artificial distributed systems,
and lead to unprecedented challenges in terms of reliability, perfor-
mance, scalability, security, cost efficiency and maintainability.

For long, electrical systems in general and electrical grids in
particular have been mainly modelled according to a mathematical
decomposition following a top-down hierarchy that corresponds
to their statically ramified architecture [17]. This kind of approach
is relevant to monolithic models where computable functions can
be derived and studied.

To satisfy the requirements expected from the new generation of
power grids, there is a need for bidirectional, real-time communica-
tion networks for data collection and processing[20]. The modern
grids should be able to collect all kinds of information regarding
electricity consumption from smart meters and production profiles
(from centralized or distributed sources) in order to increase their
efficiency and stability.

When describing the local electric community where the ex-
changes are to take place, we find many characteristics that point
toward it being a complex system:

• System Decentralization: the system is composed of many
actors (producer/consumers), distributed at multiple levels,
and able to interact and develop collective behaviors that im-
pact the overall electrical system stability; of course, should
the IT system be a blockchain, the centralisation and level
of coordination of these systems are further decreased.

• Heterogeneity of elements: the system is composed of energy
consumers who take decisions on their consumption and
production if any, energy markets, an IT infrastructure, an
electrical infrastructure, electricity suppliers, ... Each of these
stakeholders, in the pursuit of its individual interest, acts
autonomously and based on partial knowledge.

• Information Data: sensors and actuators that are spread all
over the system enable stakeholders to take varied, dynamic
actions, possibly in a programmed way

4 ACME STUDY : A THREE STEP APPROACH
The ACME virtual experiments are conducted according to a

more general process found relevant for the study of most complex
systems:

(1) Modelling the system of interest in the light of the metrics
of interest

(2) Translating these models into elements able to be technically
evaluated by a relevant simulation engine

(3) Exploiting the resulting simulator in order to generate new
domain-specific knowledge

4.1 Modelling the System of Interest
One claim of this article is that the success of a project in terms of

complex system simulation depends heavily on two characteristics:
• how the implementation of models derives naturally from
their domain-level specifications

• to which extent these models can be sheltered from the
complexity of the evaluation runtime, notably regarding
their implementation language and their integration to the
underlying simulation engine

Through the ACME example detailed here, we aim to show-
case that FP can offer solutions that have been validated through
experience and that are appropriate to secure both characteristics.
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For domain experts (ex: project managers in charge of the roll-
out of automated metering systems, urban planners or, closer to
ACME, designers of smart charging infrastructures for electric
vehicles) and also for most developers on the market, the natural
way of specifying models is often to express them based on simple
abstractions and according to schemes where usually an imperative,
object-oriented approach applies.

Indeed, more often than not, the modelling activity starts with
actual, concrete instances (ex: a given smart meter involved in a
user story), generalizes them by merging their involvement into the
various scenarios established, and splits actors into a set of roles.

This allows abstracting these elements into relevant blueprints
(ex: introducing a meter class), then separating their state (based
on attributes, which quickly need to be typed) from their behavior
(soon to becomemethods), and factoring common elements through
inheritance (ex: both a smart meter and a concentrator being then
fruitfully captured as a special case of a then-introduced abstract
communicating device).

Studying a complex system incurs some challenges. An analyti-
cal approach, whether through differential equations or stochastic
processes, is almost impossible for the level of complexity that
arises when tackling the intrinsic properties and the interactions of
IT infrastructures, electrotechnical systems and, more importantly,
human decision processes. We are required to adopt a systemic ap-
proach in which the behavior of the system components and their
interactions are first tackled on their own, before the emergence of
global properties happens.

Since we are in front of a system with a high number of interven-
ing variables, traditional systemic models like Rule Based Systems
are not suited for the task. The approach followed for ACME stems
instead from the constructivist models [10] (Individual-based Mod-
els, Multi-Agent Systems, etc.).

When dealing with a complex system of systems like an energy
community through a constructivist approach, we consider multiple
types of actors with different (sometimes conflicting) goals and
knowledge. The Multi-agent Systems approach is particularly well-
suited for this kind of problem. Indeed, by choosing to consider
each agent individually, we can concentrate on what this agent
knows about the world without risks of awareness violation, use
the domain knowledge available from system experts to design a
behavior as close to reality as possible, while using the inherent
modularity allowed by this approach to adapt our model to the
evolving needs of the stakeholders - moreover rather inexpensively
once it has been first implemented.

The ACME model covers the three essential domains required
for a proper operation of the LEM: a simplified electrical system,
an energy marketplace model [21], and a software system model.

Within each domain, the major actors accounting for the sim-
plified system have been modelled as active, stateful autonomous
agents, each in charge of a set of roles.

In the electrical system layer, the main actors that we identified
are: household supervisors (driving EMS, for Energy Management
system), electric meters, electrical appliances (such as washing ma-
chines or dishwashers), solar batteries, solar panels, electric vehicles,
charging spots and electricity suppliers.

Regarding the energy marketplace, since we wanted to explore
the impact of different IT infrastructures on the usefulness of these

Figure 2: The LEM layers covered in ACME [23]

trading organizations, we chose to explore two main types of back-
ends. The reference one corresponds to the use of a classical, cen-
tralized IT system hosted by an application server that would be
operated by a dedicated economic actor. Due to the simplicity of
the corresponding architecture and to its small scale (by design a
local community may regroup up to a few hundred participants),
we do not see such a system as a complex one.

However a goal of ACME is to investigate the upcoming architec-
tures that could support LEM use cases, namely Distributed Ledger
Technologies (DLTs). As a result, a second IT option is considered in
our simulations, in which the targeted marketplace is implemented
based on smart contracts executed by a blockchain.

The blockchain network considered in our model is a permis-
sioned consortium where properties such as privacy and security,
energy consumption (choice of consensus protocol), and scalability
and reliability are to be evaluated.

This second IT option, meant to be compared to the reference
one, may be especially relevant in the context studied by ACME:
not only prospects of drastically reducing the energy consumption
of blockchains are real (when switching from a proof of work to,
for example, proof of stake), but also a community having invested
on decentralised means of electricity production may value the
increased autonomy towards the distribution network - and then
be reluctant to be centralised again because of the IT infrastructure.

• For centralized IT, the classes needed to model the most im-
portant parts of this application (mainly the risks of single
point of failure and latency) are: Server for dealing with re-
quests, Centralized Database and the Marketplace Organizer
Service.

• For blockchain-based transactions, the design was based on
smart contracts built on a minimalist blockchain model2;
the classes needed for this model are: Participant Client (in-
heriting from DLT Client), Participant and Marketplace Or-
ganizer Contract (inheriting from abstract Smart Contract),
Simplified Blockchain Model (a light node representation
with transaction pools, block creation based on inter-block
target durations and capacity), and the blockchain ledger
itself

Our models are described in UML 2.0 (Unified Modelling Lan-
guage), which offers a standardized way to design systems. The

2Notably because the underlying P2P network is abstracted out and the blockchain
model focuses solely on its functional service.
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UML representation is especially useful in industrial projects that
most often follow widely standardized protocols and tools. Simi-
lar to an object-oriented approach, the multi-agent model can be
visualized using class diagrams, activity diagrams and use case
diagrams[11]. We made use of these diagram representations to
specify the multi-agent models describing the functioning of the
local energy market and the relationships between its different
actors (class diagrams), and also to validate the outcome with do-
main experts. The UML use case and activity diagrams are used to
represent the perceptions and actions of each agent.

4.2 Deriving from the Models a Legit
Simulation

A simulation is the imitation of the operation of a target process
or system over time. When dealing with complex systems where it
is nearly impossible to derive computable functions for the metrics
of interest, simulation is often the unique way to proceed.

The multi-agent approach adopted in the modelling stage grants
us some freedom when it comes to implementing the simulator:

• The inherentmodularity leads to simpler programmingwhen
compared with developing a monolithic, centralized agent -
especially in an interactive cycle of simulation development,
where the final users of the tool can come with new proposi-
tions about the sophistication of an agent behavior and its
interactions.

• Concurrent evaluation is also a possible outcome of this
choice since every agent’s behavior at a given time is a func-
tion of what has been encapsulated prior, so the computation
of the system’s behavior have chances to be massively paral-
lelized (each agent on its own) at the price of regularizing
the time of the simulation, as discussed in section 4.2

We will also see in section 5.2.1 that the multi-agent paradigm
finds in Erlang a direct, idiomatic implementation, and, in section
5.6, that a corresponding simulation finds in Sim-Diasca a suitable
runtime.

However, the UML 2.0 representation of the multi-agent system,
based on elements with adequate states and methods, suggests
that an object-oriented programming approach may be the most
idiomatic way to translate the models into running code.

A potential discrepancy exists there, as Erlang was chosen for
computational reasons discussed in next sections, yet its paradigm
is purely functional and not specifically object-oriented. To get the
best part of both worlds and avoid a mismatch with the practices
of domain experts and modellers, there is a need for a suitable
translation fromOOP concepts to the purely functional ones offered
by Erlang. Then all ACME models could derive, directly or not,
from an abstract mother class that the simulation framework would
provide, and agents like electricity consumers and marketplace
participants could share part of their specified states and behaviors,
while still being able to be further specialized on a per-type basis,
through subclassing and the overriding of some of their domain-
specific methods. The technical consequences of these requirements
will be discussed in 5.4.

Figure 3 illustrates a simulation with fixed consumption and
production profiles; the corresponding evolution of the local energy
prices found based on the effective trades on the LEM and using

the multi-unit double auction mechanism is presented. Following
these prices, the overall electricity bill of each participant can be
computed by aggregating their consumption satisfied from the local
market and from their supplier.

Figure 3: The evolution of local energy prices in the commu-
nity according to aggregated consumption/production de-
mands in a day during the simulation

In figure 4, the distribution of the consumption throughout the
day according to different origins (local production, battery, sup-
plier) is shown. This allows finding the percentage of self-consumed
energy in the community, and to assess the peak load reduction of
the distribution grid.

Figure 4: The distribution of energy consumed in the local
community by different origins in the simulation

Still considering ACME only as a black-box user of the underly-
ing simulation framework detailed below, we could observe that the
computation time of the simulations was scaling well with the num-
ber of actors in the simulation, especially when we consider that,
since an actor has the potential to interact with nearly all the others,
the number of messages and interactions grows exponentially with
the size of the simulated universe.

4.3 Exploiting the Simulation to Generate New
Knowledge

The simulator, once developed, can provide its users with insight
on different areas of interest. One such example is the economical
benefit of a participant in this LEM, the distribution of energy in
this community, the influence of the information system on the
market’s operation, the breakdown of the energy consumed by a
household or the outcome of the solar energy captured. Here below
are some graphs that were generated by the simulator for use cases
specified by the domain-minded users.
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Figure 5: The computation time of the simulation running
for a year vs the number of agents in the simulation

The simulator can therefore be depicted from a black-box point
of view (cf. Figure 1): for certain inputs describing a universe (num-
ber of suppliers, consumers, prosumers, solar irradiation,...), it will
unwind the interactions between the different agents and output
metrics of value for the user (percentage of renewable energy con-
sumed during the simulated time, the average bill of a participant
community, etc.). Such an exploration is particularly useful in the
study of complex systems where emergent behaviors are to be
observed based on different scenarios and actors decisions.

However the use case at hand goes beyond simply exploring the
model through the experienced eye of field experts: the current
work on ACME aims to explore its model based on evolutionary
metaheuristics and automate the search for optimal outcomes.

OpenMOLE (Open ModeL Experiment)[6], which is an open
source modelling exploration software, can serve as a tool to per-
form this model exploitation, allowing to gain new knowledge
about complex models by designing virtual experiments through
parameters exploration.

The OpenMole workflow engine offers parallel execution envi-
ronments for naturally parallel processes, which makes it a par-
ticularly suitable software layer to deploy on the EDF cluster for
further analysis of the model though more elaborate sensitivity
analysis and calibration. This is particularly important in models
with stochastic components like the ACME model.

The connection of the ACME simulator to OpenMOLE has been
done by containerizing theACME simulator applicationwithDocker
and coding an adapter layer in Python. OpenMole will use Singular-
ity to run the Docker images and interact with the model, launching
as many simulations as needed for the targeted exploitation use
cases.

5 ACMEWITH REGARD TO FUNCTIONAL
PROGRAMMING

5.1 A Glimpse at the ACME Software Stack
Exactly like the mock simulators that are provided as examples

with the public, open-source distribution of Sim-Diasca[29], the
ACME simulator sits at the top of the software layers pictured in
figure 6.

Such a layered approach has been designed in order to favor sep-
aration of concerns, and to gradually specialize a general-purpose

Figure 6: ACME Software Stack

(functional) programming environment into, ultimately, a simulator
able to evaluate any complex system of interest.

The next bottom-up walk-through of these layers will explain
their respective nature and purpose.

5.2 Runtime Layer
5.2.1 Erlang/OTP Overview. The full stack of ACME is based on the
Erlang/OTP language[19], a concurrent, functional programming
language that was first introduced in 1986 by Joe Armstrong, Robert
Virding and Mike Williams. Erlang has been developed since then
within Ericsson, and starting from 1998 has been released as free
and open-source software.

Erlang is a functional programming language, based on im-
mutable data (single assignment), and eager evaluation. It relies on
recursion and pattern matching, and provides the staples of most FP
languages, such as lambda-functions and higher-order ones, pure
guards, closures, and tail-call optimizations.

Expressions and patterns are evaluated based on terms directly
composed out of algebraic data types, knowing that a design deci-
sion of the language was not to provide any reference semantics
regarding terms.

Besides its FP nature, a central element of Erlang lies in its con-
current mode of operation: every Erlang program consists of a set
of logical processes that interact solely through asynchronous mes-
sage passing (hence with a strict isolation enforced, and no shared
memory). Each Erlang process is identified by its PID (Process Iden-
tifier), and sending a message to a process is as simple as sending
an Erlang term to the PID designating that process.

These logical processes3 are designed to be as lightweight as
possible, with a very small memory footprint (hundreds of thou-
sands of them can be evaluated by any inexpensive computer) and
to be executed concurrently by a virtual machine, based on strong,
dynamic typing4 and a garbage-collected runtime system.

An Erlang node exists on a given host (computer), and thanks
to its SMP schedulers is able to use all cores of all local CPUs in
3Erlang relies on green threading, typically implemented on top of multicore (SMP)
architectures; Erlang processes are therefore mostly unrelated to the processes of the
operating system.
4Erlang supports additionally type specifications[18], and includes built in tools in
order to perform static type checking[4].
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order to execute efficiently and in parallel all the processes that
have been (based on an explicit placement) spawned on it.

Furthermore Erlang nodes are designed to be easily intercon-
nected within a network. As inter-process communication relies
only on opaque PIDs of processes that may indiscriminately either
belong to the local node or to any remote one, by design Erlang
programs can be seamlessly distributed. The language provides
additionally the various concepts and primitives (such as monitors)
that are necessary to properly handle distribution.

The net result is a FP language especially suitable to the imple-
mentation of concurrent programs, which was the main properties
that we sought in order to develop the Sim-Diasca simulation engine
presented in section 5.6.

5.2.2 Use of Erlang/OTP as seen from ACME. The ACME simulator,
being powered by Sim-Diasca, corresponds to a rather unusual
application of Erlang: whereas this language shines for distributed,
fault-tolerant, soft real-time applications for which high availabil-
ity is key, these features may not seem so much in-line with the
requirements of use cases pertaining to the simulation of complex
systems discussed in section 5.6.

However, to anticipate a bit on this section, a first point is that
these simulations may either be fully standalone (being then able
to be just evaluated as fast as possible), or may have to run on par
with an external clock.

Indeed, in the former case (to which ACME belongs), the simula-
tion is able to recreate a full virtual experiment, in which both the
target system (in ACME: a local energy marketplace and its resi-
dential participants) and its context (here: the information system
implementing these services, the electric vehicles, the household
appliances, the suppliers, etc.) have been translated to models on
which the simulation engine has full control; as a consequence it
can schedule their evaluation as fast as the hardware resources
permit.

On the contrary, the latter case is closer to emulation insofar
that it involves an external clock source (generally deriving from
wallclock time, possibly with a scale factor) that rules a part of
the system of interest (ex: an actual smart meter device whose
compliance shall be tested). The simulation can then be used to
recreate the rest of the system and of its context, for example to
emulate all the elements with which said smart meter is to interact,
for a controlled testing thereof. For such a use case, provided that
the simulation is fast enough (hence the interest in parallelism), it
can outpace the external clock and thus be automatically slowed
down by the time manager of the simulation engine in order to
be just on par with that clock; in such a setting the soft real-time
capabilities of the Erlang VM (notably its fair, non-blocking process
scheduling and its concurrent tracing garbage collector) are of great
interest.

Other traits of the Erlang language, concurrency and scalability,
are even more essential for our use cases but will be discussed in
layers above in the software stack.

Finally, some other language-level features of Erlang found no
echo in simulators like ACME, notably the support of systems that
shall never stop (thanks to hot code update) or for fault-tolerance:
simulations are meant to be one-shot runs, and shall crash as early

and as fully as possible whenever any model-level error condition
is met, rather than trying to maintain any sort of service.

In practice, for the development of ACME, this translated mostly
to sticking to pure Erlang, and not specifically relying on its associ-
ated OTP framework5.

5.2.3 Hardware and System-level Considerations. Section 4.2 dis-
cussed why a major challenge of simulations of complex systems is
to maximize the concurrency of their evaluation. How effective FP
may be in order to devise proper parallel and distributed algorithms,
these computations have to ultimately map onto actual hardware
resources that are relevant in an industrial context.

For that we experimented various technical options potentially
effective in order to run Erlang code.

One promising architecture for this use - long predating ACME
- was the manycore cards, offering numerous independent pro-
cessing units corresponding to a concurrent alternative to parallel,
vectorized architectures such as GPU-based stream processors.

Experimentswere thusmadewith a Tilera card, the TILEPro64[9],
a cache-coherent mesh network of 64 VLIW ISA "Tile proces-
sors". The Erlang VM could be adequately cross-compiled to the
TILEPro64 RISC architecture, and - almost transparently thanks to
the Erlang toolchain and bytecode-based runtime - Sim-Diasca as
well.

While this key step succeeded, the overall process of transferring
code and data back and forth to the card was a bit cumbersome
(knowing that extra tools, such as post-processing ones, were not
as portable as the simulation itself) and, more importantly, making
an efficient use of these cards would have required to adapt at least
the load-balancing of the engine in order to take advantage of the
underlying connectivity patterns of the tiles. Since such ad hoc
developments exceeded the potential gains that we foresaw for
our R&D use cases of that time (knowing moreover that this effort
would have been specific to a rather non-standard hardware, of
uncertain longevity), no further step was made in this direction; this
test nevertheless confirmed a promising match between manycore
architectures and at least this kind of Erlang applications.

Another parallel execution platform that was experimented -
this time in the context of the RELEASE European project[28] -
was the potential use of Erlang on supercomputers, platforms on
which FP is probably less present. Indeed, in addition to the HPC
clusters that will be mentioned next, EDF R&D used to rely on IBM
Bluegene supercomputers, first the Bluegene/P generation, then
the Bluegene/Q one. A tentative port of the Erlang VM was done
on this last platform, in the prospect of being able to access a huge
number of (PowerPC) cores allowing to explore the limitations met
by larger simulations. Beside the CPU architecture, the port was
made especially difficult by a very limited POSIX compliance (ex:
regarding fork/execvp operations onto OS processes) and by the
lack of a proper TCP/IP stack. A workaround was to switch the
Erlang native carrier to a MPI-based one, yet the task was complex
and these supercomputers were becoming increasingly superseded
by HPC clusters anyway.

This finally explains why our current simulations are to run
preferably on such cluster architectures when needing significant

5OTP stands for Open Telecom Platform and actually offers abstractions such as super-
vision trees in order to develop in any kind of fault-tolerant server application.
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hardware resources. In the case of ACME, simulations do not de-
mand a lot in terms of processing power, memory or network usage
(the models involved remain fairly lightweight, and the number of
their instances remains quite limited since, by nature, electrical self-
consumption is to happen within local communities comprising
only up of few hundred households).

If a single ACME simulation surely does not require to be dis-
tributed, as mentioned in section 4.3 their exploitation demands
many simulation runs, explaining why a cluster is a tool of choice
for this use case as well, and why specific needs arise at this level.

The development environment could then be quite common
(x86-64 running GNU/Linux), yet in line with these final execution
targets6.

Overall, despite a certain distance between most FP languages
and the HPC domain, harnessing these larger hardware resources -
at least in Erlang - was not only possible but also relatively straight-
forward. This offered a reasonable probability that, almost regard-
less of their resource requirements, the functional programs dis-
cussed next could find sufficient runtime options whenever needed.

5.3 A Focus on the Myriad Layer and its
Metaprogramming Facilities

The next level of the ACME software stack leaves general Erlang
to enter our own set of conventions and specializations.

Myriad[12] is a generic-purpose, open-source layer whose role is
to complement Erlang with the extra base functionalities to Erlang
that we found useful. While not being specifically designed for
Sim-Diasca, it offered a stable basis to it.

There is little interest in listing in this article the services offered
by the Myriad layer, as most of them are rather mundane (merely
higher-level versions of basic operations covered by the Erlang
standard library, like file management, data formats, data structures,
language integration, text transformations, math primitives, unit
management, etc.). Yet, from a FP point of view, probably that the
most interesting part of Myriad relates to its support of the built-in
way of performing metaprogramming in Erlang, which is illustrated
by figure 7 and is detailed here.

As mentioned, an Erlang program is nothing but a set of interact-
ing processes. When an Erlang process is spawned, it is told which
function of which module it shall execute with which arguments,
and this process will simply evaluate that function (in parallel of
all other processes), and terminate once done. In practice, most
processes will evaluate recursive functions during which messages
will be sent to other processes and be received from them.

For such a program to be built, the standard, default path is to
start from a source code defining a set of modules, each defining
a set of functions, some of which being exported. After various
parsing and preprocessing steps, a module being compiled will end
up in AST (Abstract Syntax Tree) form, which is an in-memory
representation of its code as a data structure (i.e. an Erlang term),
whose grammar covers all the elements of the language (functions,
types, clauses, expressions, guards, patterns, etc. - all this according
to the so-called Abstract Format[2]).
6Precisely EDF has standardized for long their hardware and software platforms
with, respectively, Calibre computers running Scibian[8], an in-house GNU/Linux
distribution deriving from Debian, specialized for scientific computing and natively
compliant with the rest of the internal IT ecosystem.

Such a form defines completely the code of that module (and
also its type specifications), and is used as the input of a multi-
pass compiler which, through an intermediary, simpler language
(Core Erlang), generates either assembly code for the BEAM virtual
machine (as bytecodes) or, in some cases, native code (through
HiPe).

So the build is to result into such per-module generated byte-
codes, which are stored as BEAM files meant to be interpreted7 at
runtime by the Erlang virtual machine.

This standard compilation path is of course fully transparent
to the user, and has for advantage to offer a FP paradigm which
remains extremely tractable for the developer while being very
effective to address concurrency and achieve seamless distribution.

As shown in figure 7, alternatively to the usual compilation path,
a metaprogramming one can be gone through. Its principle is to
generate from the sources the same AST as before, yet then to allow
user-provided code to transform it arbitrarily, before inserting the
resulting newAST in the next stages of the pipeline (linter then com-
piler). In Erlang parlance, such arbitrary metaprogramming code is
designated as a parse transform, and of course is implemented in
Erlang as well.

Myriad, through its AST support, can fully traverse the Erlang
grammar8 and provides a generic way of defining one’s transfor-
mations, akin to a visitor pattern in which a functor could intercept
language elements of interest and possibly alter them as wanted.

If such a generic service is primarily used in the above layers of
the Sim-Diasca based simulations, it found also some use directly
at the Myriad level, in order:

• to introduce a few, simple pseudo-builtin polymorphic types,
such as a maybe-type or an associative table datatype then
translated to one of our actual implementations of interest,
offering various trade-offs

• to enable conditional code injection, the idea being to pro-
vide compile-time test constructs (akin, in C parlance, to
if or switch) in order to select, based on tokens defined
by the user, which code shall be applied9; this is useful, for
example, to enable model-level assertions (checking pre- /
post-conditions) depending on a targeted execution context

• to support the efficient sharing of mostly immutable datas-
tructures between processes, by compiling in-memory, and
possibly only at runtime from third-party data, code return-
ing the elements that shall be shared; generating data-as-
code favors scalability insofar as any number of processes
can then readily access to these elements without having to
duplicate these terms in their respective generational heap

Myriad also proposes its own build system (based on GNU make,
yet layered as well, and comprising adequate parallel, automatic
rules) instead of relying on the de facto standard rebar3[7], notably
as we needed a more complex, flexible multi-stage build procedure
to accommodate our use of metaprogramming.
7Starting from Erlang/OTP 24, a JIT (Just-In-Time) compiler has been introduced in
order to further improve the execution efficiency.
8As a consequence, Myriad could metaprogram itself; however we saw no interest in
introducing a corresponding bootstrap phase.
9As these tokens may be seen as compile-time variables, other control structures such
as loops/recursion ones could be added in order to reach a sufficient expressiveness,
perhaps Turing-complete, that would allow any given user program to be executed at
two levels in turn, a meta one at build time and an operational one at runtime.



Application of Functional Programming in the Energy Industry: A Local Energy Market Simulator Use Case IFL21, Sep. 2021, Radboud

Figure 7: Use of metaprogramming implicitly done by ACME

5.4 The WOOPER Layer: a Functional Addition
of an Object-Oriented Paradigm

Asmentioned in section 5.2.1, Erlang offers a strong, concurrency-
oriented FP paradigm, yet, as shown in section 4.1, the natural mode
of expression for our models is mostly imperative (domain experts
describe them as sequences of operations to be performed) and,
above all, object-oriented (based on factored behaviors and states
that can be collectively managed, yet still be specialised as needed).

The purpose of WOOPER[14] is to bridge this semantic gap, by
augmenting Erlang with an OOP (Object-Oriented Programming)
trait, as described by the mapping synthesised in table 1.

This WOOPER layer is based on the Myriad one, and has been
similarly released as open-source software.

WOOPER predated Myriad’s support for metaprogramming; as a
result it used to rely exclusively on preprocessor directives, leading
to limitations that the WOOPER parse transform finally removed;
notably now the class developer can define any number of construc-
tors (of any arity and any number of clauses), an optional destructor,
and the various types of methods (member ones - namely oneways
and requests- and static ones) are detected and to some extent
checked regarding their implementation and their type specifica-
tion.

Internally, a WOOPER instance (akin to a UML active object) is
an Erlang process that, once constructed, loops indefinitely over
a tail-recursive function whose sole parameter is the state of this
instance (including a few metadata), which is implemented as an
associative table storing the instance attributes.

This instance waits for incoming (Erlang) messages that directly
map to as many inbound method calls, which are either oneways
(one-shot, fire and forget calls) or requests (synchronous calls, re-
turning a result to the caller process).

A class-level precomputed virtual table allows to select the rele-
vant implementation for each of the exposed methods, according
to the inheritance graph of that class.

WOOPER
concept

Corresponding mapping to Erlang

Class definition Module
Active instance Process
Active instance
reference

Process identifier (PID)

Passive instance Opaque term
New operators WOOPER-generated functions branching

to user-defined constructors
Delete operator WOOPER-generated function branching

to any user-defined destructor
Member method
definition

Module function respecting request or
oneway conventions

Member method
invocation

Sending of an appropriate inter-process
message

Method look-up Class-specific, inheritance-aware, virtual
table

Class (static)
method

Module function respecting conventions

Instance state Set of arbitrarily-typed attributes
Table 1: Mapping fromWOOPER to Erlang

Such a scheme accounts transparently for polymorphism (a
WOOPER instance being designated by the PID of its hosting Er-
lang process, as an opaque reference, and resolving by itself the
triggered methods according to its actual class) and for multiple
inheritance (the per-class virtual table being preprocessed and then
shared, without duplication, between its actual, direct instances);
on such basis, strict encapsulation and introspection can also easily
be achieved.
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If a few third-party elements are confused because of themetapro-
gramming involved (like the Language Server Protocol or rebar3-
based builds), the current implementation is to preserve most if
not all features of Erlang (ex: static checking, hot code upgrade,
JIT compilation), as the resulting bytecodes are pure Erlang BEAM
ones.

On a side note, the metaprogramming done is so transparent and
straightforward that even the code in charge of the metaprogram-
ming is itself metaprogrammed (as, when compiled, the WOOPER
parse transform is itself metaprogrammed by the Myriad parse
transform). To anticipate a bit, as hinted by figure 7, further in the
software stack a Sim-Diasca parse transform is in turn introduced,
resulting in most modules of the ACME simulator (notably its mod-
els) going through three different passes of metaprogramming.

As a result, if Myriad-based code is mostly pure Erlang,WOOPER
corresponds to a dialect that is, at least superficially, drifting further
apart from the base language. Nevertheless, in practice WOOPER
is just a very thin layer on top of Erlang, just augmenting it with
the extra trait of OOP.

Another view on this is that WOOPER offers, thanks to Erlang,
a way of defining in FP an object-oriented multi-agent system
possibly of unprecedented scalability; however, as seen in section
5.6, this remains still quite far from being a simulation.

5.5 The Traces Layer, for an in-depth
Monitoring of Concurrent Agents

In the context of ACME, many agents interact concurrently (ex:
askers and bidders interacting through their smart contracts with
themarketplace), and very soon the superposition of their behaviors
cannot be anticipated (otherwise no simulation would be necessary
at the first place).

The open source Traces[13] layer offers an infrastructure based
on WOOPER to allow for the emission, collection and supervision
of detailed parallel and distributed traces (applicative logs).

In practice, Traces introduces a TraceEmitter abstract mother
class from which all agents able to log their state and behavior are
to inherit. A dedicated parser allows to use the (optional) LogMX
supervision tool. Hundred of thousands traces can then be browsed
live or post-mortem, and be filtered according to several metadata
(timestamps, hosts, topics, severities, emitters, etc.).

Since such traces are invaluable for many uses yet quite de-
manding in terms of processing resources, the least critical ones
and/or those not pertaining to a set of topics of interest can be eas-
ily silenced (incurring then, thanks to metaprogramming, neither
source-level code change nor any runtime overhead).

This service offers little FP challenges and thus will not be de-
tailed further in this article. It has nevertheless proven to be of
paramount importance in order to properly develop models and
troubleshoot larger systems.

5.6 The Sim-Diasca Layer, to perform the
actual Simulations of Complex Systems

5.6.1 Purpose. The ACME simulator is built on top of the Sim-
Diasca simulation engine, a generic platform designed for the sim-
ulation of all kinds of large-scale, discrete-time, complex systems.

Most aspects of the engine will be only synthesised here, as they
fall outside of the scope and size limit of this article. One may refer
to the Sim-Diasca general-purpose presentation available in [30]
for a more complete overview thereof.

At the heart of most simulation engines lies the management of
virtual time. Most of the complex systems are modelled in discrete
time, either as this matches their nature (ex: IT systems) or because,
at the scale of interest, the actual physical phenomena can be safely
discretized time-wise (for instance, the numerical solving of the
differential equations involved in the computation of electrical load
flows pertains to a different class of simulations, in answer to other
use cases).

Being finely disaggregated, most complex systems comprise a
large number of elements. This is especially the case for utilities,
whose industrial projects lead directly to higher volumetries like
the ones mentioned in section 2 (tens of thousand tasks for unit
maintenance planning, dozens of millions of smart meters, etc.).

The scalability challenges underwent by the target system im-
pact similarly their simulation, for which a sequential computation
shall be ruled out: for larger systems, evaluating one model10 in-
stance at a time would result in intractable simulation durations.
A more relevant approach is thus to opt for discrete-time parallel
simulations.

These more advanced techniques encompass two categories of
engines: synchronous, time-stepped ones (simpler but offering often
lesser speedup) or asynchronous ones. This last category further
ramifies into two main classes of algorithms, conservative ones
(which require model-level look-ahead, deadlock detection and
avoidance mechanisms) and optimistic ones (requiring complex,
potentially frequent, distributed simulation rollbacks). These topics
have been active areas of research for decades, and resulted in
various solutions, exhibiting different trade-offs.

In the case of Sim-Diasca, the core of the management of virtual
time is synchronous (enabling emulation-based use cases as dis-
cussed in section 5.2.2), with two specificities: the incorporation of
asynchronous traits and the use of special simulation timestamps.

The first specificity allows a simulation case to define a fun-
damental, overall evaluation frequency (possibly relatively fine;
for instance 50Hz for metering systems), and to have the model
instances be then arbitrarily scheduled in the limits of this granular-
ity. Models express their timings in terms as absolute durations that
are adequately translated and managed by the engine, in charge of
scheduling their spontaneous and triggered behaviours, based on
the exchanges of so-called actor11 messages and a hierarchy of time
managers. The main feature of the engine at this level is to perform
an efficient scheduling, similar to the asynchronous approaches, by
jumping automatically over arbitrarily long periods without any
possible activity of actors, and to ensure that all actors than can be
scheduled are evaluated fully in parallel.

The second specificity relies on the use of a simulation timestamp
in the form of a (T,D) pair, where T is a simulation tick (in virtual
time) and D corresponds to a diasca, a concept that we introduced
as a logical moment of null duration, transparently managed by

10A model shall be understood here as a simplified, abstract representation of an
element of the target system of interest. Like a model of a battery, or of an electric
vehicle, a marketplace, a smart contract, etc.
11Actor being used here as a shorthand for model instance.
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the engine in order to sort out causality and the other properties
discussed next.

Indeed the simulations that we target are to meet following three
properties, relatively straightforward to enforce in a sequential
context, yet considerably more problematic to obtain efficiently in
a concurrent one:

(1) the respect of causality: without a proper reordering of inter-
actor messages done by the engine, on a regular basis causes
would happen after their effects from the point of view of
some actors12, leading to incorrect model evaluation; Sim-
Diasca performs such an automatic, transparent reordering,
moreover in a massively parallel manner

(2) a total reproducibility (a simulation run twice should fol-
low exactly the same trajectory and yield the same results),
which is not granted by default either, not only because of
parallelism and distribution, but also because models may
be stochastic, i.e. may be at least partly ruled by probability
density functions

(3) some form of ergodicity, so that:
(a) all possible outcomes according to the models can actually

occur in the simulations
(b) their probability of showing up in the simulations is close

to the one that could be determined a priori from the
models

By providing adequate constructs (process isolation and sched-
uling, higher-level asynchronous messaging, seamless distribution)
and safety nets (ex: automatic memory management, immutability
and the limitation of side-effects), a FP solution like Erlang has been
instrumental to the design of such an intensely concurrent mode
of operation, and resulted in a tool able to scale up significantly13:
at the algorithmic level, a maximal parallelization of the evalua-
tion of models could be devised, whereas at the runtime level, as
mentioned in section 5.2.3, adequate computing resources could be
harnessed (multicores, SMP, clusters and other HPC solutions).

We focused in this article on time management, as this is a
domain that benefited a lot from FP. Yet quite many other services,
which will be only lightly mentioned here due to size constraints,
have also to be provided in order to properly support simulations
and conduct virtual experiments such as ACME; like:

• the definition of simulation cases, including the creation of
a relevant initial state - programmatically or through file-
based, parallel initialisation

• the automatic deployment of the full resulting simulator
(code and data) on a set of computing nodes, with no prior
installation thereof except Erlang itself (optionally integrated
to a cluster job manager like Slurm)

• the life-cycle management of all actors (initial or created by
other actors in the course of the simulation)

• the load balancing of a simulation running across several
computing hosts, including the management of placement
hints in order to co-allocate model instances known to be
tightly coupled

12Typically, as we detailed in [30], 3 actors, each running on a different computing
node, and as many actor messages are sufficient to showcase a breach of causality.
13Even back in 2009 we were able to evaluate, over a few nodes of clusters of that
time, distributed simulations comprising each more than 1 million instances of rather
heavyweight models, evaluated in parallel.

• the management of simulation results, thanks to basic or
specialised probes fed with samples sent by actors and aggre-
gated in simulation metrics (everything done concurrently
as well)

• auxiliary services, such as performance tracking, data ex-
changer (to provide extra communication tradeoffs), dataflow
support, stochastic support

An insight of this work is that thanks to overall conventions,
language facilities and simulation services, the models are sheltered
from most of the complexity of the simulation. Indeed, despite the
several layers presented here and the requirements to fulfill, writing
a model merely boils down to defining the structure of its state
and then specifying its behavior (both spontaneous and triggered),
through only very simple, sequential, autonomous actions: (1) op-
erating internal state changes, (2) planning future spontaneous
schedulings for oneself and (3) sending actor messages to others.

6 SOME FP-RELATED LESSONS LEARNED
THROUGH PRACTICE

Over the years, in addition to ACME, a few simulators based on
Sim-Diasca have been developed internally to EDF R&D on behalf
of various projects, regarding smart metering infrastructures, urban
planning or the organisation of complex unit maintenance.

A lesson that these experiments taught us is that, for similar
studies to be done in a FP context, at least two routes could be
considered and contrasted.

The first one, that can be illustrated for example by a former
IFL article on a related topic[3], is directly based on high-end, com-
prehensive FP abstractions, involving typically strong static type
system like the provided by the Haskell language, monadic stream
functions and a wide range of advanced techniques in order to favor
purity and better delimit by design side effects.

The second one, discussed in this article, offers two levels: first
a very straightforward, pragmatic approach (like done with pure
Erlang, or with our simple, protected setting in which user models
are to be implemented), then a fully optional, more advanced level
that enables more powerful solutions (like when making use of
metaprogramming, or entering the domain of the engine itself - in
which most of the complexity is deported - and the extra services
that may be then considered).

The first high-end approach provides unrivaled guarantees about
the properties met by simulations even before they are run. The
second approach brings another kind of benefit: general simplicity,
moreover at an adjustable level.

Our initial belief was that this last approach could become lim-
iting and/or hit performance issues. The plan was to gradually
enhance the weaker points of the engine on a per-need basis, pos-
sibly by going for increasingly static typing and a stricter concur-
rency model. Each time Erlang would have been insufficient, a more
adapted language would then be considered (ex: possibly allowing
models to be implemented, thanks to language bindings, in Haskell
for expressiveness, or in Rust for raw performance).

However we actually never really reached such hard limits,
whereas in the meantime considerable latent leeway appeared
thanks to metaprogramming potentialities, algorithmic enhance-
ments and the now operational JIT compiler.
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Instead we were repeatedly hit by a significantly more concrete
issue, still relating to FP and that would have been especially exac-
erbated in the first, high-end approach: as soon as such a simulation
project was proving its usefulness, ramping up the developing re-
sources became both a necessity and a problem. Indeed, requesting
from subcontractors additional workforce in terms of developers
with prior FP skills proved to be a challenge. Too often, offers were
either non-existing or inadequate (inexplicably expensive or not
able to complement an in-house team due to distance, work prac-
tices or spoken language). Albeit this is certainly a down to earth
problem, such pitfalls could be largely sufficient to preclude at least
some applications of FP in an industrial context.

We found however a rather effective workaround by, in several
occasions, hiring junior engineers (not necessarily developers) with
no prior FP background, and training them internally regarding the
software stack presented in this article. Thanks to the simplicity of
the FP approach taken, they could be brought up to speed within a
few weeks, and were able to contribute, often with great success,
to these simulation projects. This has been the case for ACME.

7 FINAL WORD & PERSPECTIVES
In this article, we discussed the development of a simulator for

a local energy marketplace and showcased the industrial use of a
functional language like Erlang for the simulation for real-world
systems.

We explained how, in the context of this ACME project, we
translated a UML 2.0 description obtained from domain experts
into a complete simulation able to take advantage of the intrinsic
properties of Erlang in favor of massive parallelism and distribution.

The software layers involved (Myriad, WOOPER, Traces and
Sim-Diasca) facilitating such translation for the user have been also
been described, and examined in a FP perspective.

Future work may include a tool for automatic code generation
for multi-agent simulations based on the model driven development
methodology (through the use of formal description of the agents at
the analytical level and transformation software based onWOOPER
for automatic code generation), extra communication primitives
allowing to further mask the underlying parallelism for model-level
synchronous interactions, and newer applications of the Sim-Diasca
engine to the simulation of large-scale business IT systems, in the
prospect of obtaining a digital twin thereof.
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